Dinosaurs fell victim to perfect storm of events, study shows
Dinosaurs might have survived the asteroid strike that wiped them out if it had taken place slightly earlier or later in history, scientists say.
A fresh study using up-to-date fossil records and improved analytical tools has helped palaeontologists to build a new narrative of the prehistoric creatures’ demise, some 66 million years ago.
They found that in the few million years before a 10km-wide asteroid struck what is now Mexico, Earth was experiencing environmental upheaval. This included extensive volcanic activity, changing sea levels and varying temperatures.
At this time, the dinosaurs’ food chain was weakened by a lack of diversity among the large plant-eating dinosaurs on which others preyed. This was probably because of changes in the climate and environment.
This created a perfect storm in which dinosaurs were vulnerable and unlikely to survive the aftermath of the asteroid strike.
The impact would have caused tsunamis, earthquakes, wildfires, sudden temperature swings and other environmental changes. As food chains collapsed, this would have wiped out the dinosaur kingdom one species after another. The only dinosaurs to survive were those who could fly, which evolved to become the birds of today.
Researchers suggest that if the asteroid had struck a few million years earlier, when the range of dinosaur species was more diverse and food chains were more robust, or later, when new species had time to evolve, then they very likely would have survived.
An international team of palaeontologists led by the University of Edinburgh studied an updated catalogue of dinosaur fossils, mostly from North America, to create a picture of how dinosaurs changed over the few million years before the asteroid hit. They hope that ongoing studies in Spain and China will aid even better understanding of what occurred.
Their study, published in Biological Reviews, was supported by the US National Science Foundation and the European Commission. It was led by the Universities of Edinburgh and Birmingham in collaboration with the University of Oxford, Imperial College London, Baylor University, and University College London. The world’s top dinosaur museums — The Natural History Museum, the Smithsonian Institution, the Royal Ontario Museum, the American Museum of Natural History and the New Mexico Museum of Natural History and Science — also took part.
Dr Steve Brusatte, of the University of Edinburgh’s School of GeoSciences, said: “The dinosaurs were victims of colossal bad luck. Not only did a giant asteroid strike, but it happened at the worst possible time, when their ecosystems were vulnerable. Our new findings help clarify one of the enduring mysteries of science.”
Dr Richard Butler of the School of Geography, Earth and Environmental Sciences at the University of Birmingham, said: “There has long been intense scientific debate about the cause of the dinosaur extinction. Although our research suggests that dinosaur communities were particularly vulnerable at the time the asteroid hit, there is nothing to suggest that dinosaurs were doomed to extinction. Without that asteroid, the dinosaurs would probably still be here, and we very probably would not.”
Ancient whodunit may be solved: Methane-producing microbes did it!
Evidence left at the crime scene is abundant and global: Fossil remains show that sometime around 252 million years ago, about 90 percent of all species on Earth were suddenly wiped out — by far the largest of this planet’s five known mass extinctions. But pinpointing the culprit has been difficult, and controversial.
Now, a team of MIT researchers may have found enough evidence to convict the guilty parties — but you’ll need a microscope to see the killers.
The perpetrators, this new work suggests, were not asteroids, volcanoes, or raging coal fires, all of which have been implicated previously. Rather, they were a form of microbes — specifically, methane-producing archaea called Methanosarcina — that suddenly bloomed explosively in the oceans, spewing prodigious amounts of methane into the atmosphere and dramatically changing the climate and the chemistry of the oceans.
Volcanoes are not entirely off the hook, according to this new scenario; they have simply been demoted to accessories to the crime. The reason for the sudden, explosive growth of the microbes, new evidence shows, may have been their novel ability to use a rich source of organic carbon, aided by a sudden influx of a nutrient required for their growth: the element nickel, emitted by massive volcanism at just that time.
The new solution to this mystery is published this week in the Proceedings of the National Academy of Sciences by MIT professor of geophysics Daniel Rothman, postdoc Gregory Fournier, and five other researchers at MIT and in China.
The researchers’ case builds upon three independent sets of evidence. First, geochemical evidence shows an exponential (or even faster) increase of carbon dioxide in the oceans at the time of the so-called end-Permian extinction. Second, genetic evidence shows a change in Methanosarcina at that time, allowing it to become a major producer of methane from an accumulation of carbon dioxide in the water. Finally, sediments show a sudden increase in the amount of nickel deposited at exactly this time.
The carbon deposits show that something caused a significant uptick in the amount of carbon-containing gases — carbon dioxide or methane — produced at the time of the mass extinction. Some researchers have suggested that these gases might have been spewed out by the volcanic eruptions that produced the Siberian traps, a vast formation of volcanic rock produced by the most extensive eruptions in Earth’s geological record. But calculations by the MIT team showed that these eruptions were not nearly sufficient to account for the carbon seen in the sediments. Even more significantly, the observed changes in the amount of carbon over time don’t fit the volcanic model.
“A rapid initial injection of carbon dioxide from a volcano would be followed by a gradual decrease,” Fournier says. “Instead, we see the opposite: a rapid, continuing increase.”
“That suggests a microbial expansion,” he adds: The growth of microbial populations is among the few phenomena capable of increasing carbon production exponentially, or even faster.
But if living organisms belched out all that methane, what organisms were they, and why did they choose to do so at that time?
That’s where genomic analysis can help: It turns out that Methanosarcina had acquired a particularly fast means of making methane, through gene transfer from another microbe — and the team’s detailed mapping of the organism’s history now shows that this transfer happened at about the time of the end-Permian extinction. (Previous studies had only placed this event sometime in the last 400 million years.) Given the right conditions, this genetic acquisition set the stage for the microbe to undergo a dramatic growth spurt, rapidly consuming a vast reserve of organic carbon in the ocean sediments.
But there is one final piece to the puzzle: Those organisms wouldn’t have been able to proliferate so prodigiously if they didn’t have enough of the right mineral nutrients to support them. For this particular microbe, the limiting nutrient is nickel — which, new analysis of sediments in China showed, increased dramatically following the Siberian eruptions (which were already known to have produced some of the world’s largest deposits of nickel). That provided the fuel for Methanosarcina’s explosive growth.
The resulting outburst of methane produced effects similar to those predicted by current models of global climate change: a sudden, extreme rise in temperatures, combined with acidification of the oceans. In the case of the end-Permian extinction, virtually all shell-forming marine organisms were wiped out — consistent with the observation that such shells cannot form in acidic waters.
“A lot of this rests on the carbon isotope analysis,” Rothman says, which is exceptionally strong and clear in this part of the geological record. “If it wasn’t such an unusual signal, it would be harder to eliminate other possibilities.”
While no single line of evidence can prove exactly what happened in this ancient die-off, says Rothman, who is also director of MIT’s Lorenz Center, “the cumulative impact of all these things is much more powerful than any one individually.” While it doesn’t conclusively prove that the microbes did it, it does rule out some alternative theories, and makes a strong and consistent case, he says.
Mass strandings of marine mammals blamed on toxic algae: Clues unearthed in ancient whale graveyard
Mass strandings of whales have puzzled people since Aristotle. Modern-day strandings can be investigated and their causes, often human-related, identified. Events that happened millions of years ago, however, are far harder to analyze — frequently leaving their cause a mystery. A team of Smithsonian and Chilean scientists examined a large fossil site of ancient marine mammal skeletons in the Atacama Desert of Northern Chile — the first definitive example of repeated mass strandings of marine mammals in the fossil record. The site reflected four distinct strandings over time, indicating a repeated and similar cause: toxic algae. The team’s findings will be published Feb. 26 in the Proceedings of the Royal Society B.
The site was first discovered during an expansion project of the Pan-American Highway in 2010. The following year, paleontologists from the Smithsonian and Chile examined the fossils, dating 6-9 million years ago, and recorded what remained before the site was paved over.
The team documented the remains of 10 kinds of marine vertebrates from the site, named Cerro Ballena — Spanish for “whale hill.” In addition to the skeletons of the more than 40 large baleen whales that dominated the site, the team documented the remains of a species of sperm whale and a walrus-like whale, both of which are now extinct. They also found skeletons of billfishes, seals and aquatic sloths.
What intrigued the team most, however, was how the skeletons were arranged. The skeletons were preserved in four separate levels, pointing to a repeated and similar underlying cause. The skeletons’ orientation and condition indicated that the animals died at sea, prior to burial on a tidal flat.
Effects of Toxic Algae
Today, toxins from harmful algal blooms, such as red tides, are one of the prevalent causes for repeated mass strandings that include a wide variety of large marine animals.
“There are a few compelling modern examples that provide excellent analogs for the patterns we observed at Cerro Ballena — in particular, one case from the late 1980s when more than a dozen humpback whales washed ashore near Cape Cod, with no signs of trauma, but sickened by mackerel loaded with toxins from red tides,” said Nicholas Pyenson, paleontologist at the Smithsonian’s National Museum of Natural History and lead author of the research. “Harmful algal blooms in the modern world can strike a variety of marine mammals and large predatory fish. The key for us was its repetitive nature at Cerro Ballena: no other plausible explanation in the modern world would be recurring, except for toxic algae, which can recur if the conditions are right.”
Harmful algal blooms are common along the coasts of continents; they are enhanced by vital nutrients, such as iron, released during erosion and carried by rivers flowing into the ocean. Because the Andes of South America are iron-rich, the runoff that has occurred along the west coast of South America for more than 20 million years has long provided the ideal conditions for harmful algal blooms to form.
From their research, the scientists conclude that toxins generated by harmful algal blooms most likely poisoned many ocean-going vertebrates near Cerro Ballena in the late Miocene (5-11 million years ago) through ingestion of contaminated prey or inhalation, causing relatively rapid death at sea. Their carcasses then floated toward the coast, where they were washed into a tidal flat by waves. Once stranded on the tidal flat, the dead or dying animals were protected from marine scavengers, and there were no large-land scavengers in South America at this time. Eventually, the carcasses were buried by sand. Because there are four layers at Cerro Ballena, this pathway from sea to land occurred four different times during a period of 10,000 to 16,000 years in the same area.
“Cerro Ballena is the densest site for individual fossil whales and other extinct marine mammals in entire world, putting it on par with the La Brea Tar Pits or Dinosaur National Monument in the U.S.,” Pyenson said. “The site preserves marine predators that are familiar to modern eyes, like large whales and seals. However, it also preserves extinct and bizarre marine mammals, including walrus-like whales and aquatic sloths. In this way, the site is an amazing and rare snapshot of ancient marine ecosystems along the coast of South America.”
3-D Technology at Cerro Ballena
Because the site was soon to be covered by the Pan-American Highway, time was very limited for the researchers. A major solution came in the form of 3-D technology. Pyenson brought a team of Smithsonian 3-D imaging experts to Chile, who spent a week scanning the entire dig site.
Although all the fossils found from 2010 to 2013 have been moved to museums in the Chilean cities of Caldera and Santiago, the Smithsonian has archived the digital data, including the 3-D scans, from the site at cerroballena.si.edu. There, anyone can download or interact with 3-D models of the fossil whale skeletons, scan Google Earth maps of the excavation quarries, look at a vast collection of high-resolution field photos and videos or take 360-degree tours of the site.
The enormous wealth of fossils that the team examined represents only a fraction of the potential at Cerro Ballena, which remains unexcavated. The scientists conservatively estimate that the entire area preserves several hundred fossil marine mammal skeletons, awaiting discovery. Pyenson’s colleagues at the Universidad de Chile in Santiago are actively working to create a research station near the fossils of Cerro Ballena so that those that have been collected and those still covered by sediments can be protected for posterity.
Mapping the Demise of the Dinosaurs
Dec. 9, 2013 — About 65 million years ago, an asteroid or comet crashed into a shallow sea near what is now the Yucatán Peninsula of Mexico. The resulting firestorm and global dust cloud caused the extinction of many land plants and large animals, including most of the dinosaurs. At this week’s meeting of the American Geophysical Union (AGU) in San Francisco, MBARI researchers will present evidence that remnants from this devastating impact are exposed along the Campeche Escarpment — an immense underwater cliff in the southern Gulf of Mexico.
The ancient meteorite impact created a huge crater, over 160 kilometers across. Unfortunately for geologists, this crater is almost invisible today, buried under hundreds of meters of debris and almost a kilometer of marine sediments. Although fallout from the impact has been found in rocks around the world, surprisingly little research has been done on the rocks close to the impact site, in part because they are so deeply buried. All existing samples of impact deposits close to the crater have come from deep boreholes drilled on the Yucatán Peninsula.
In March 2013, an international team of researchers led by Charlie Paull of the Monterey Bay Aquarium Research Institute (MBARI) created the first detailed map of the Campeche Escarpment. The team used multi-beam sonars on the research vessel Falkor, operated by the Schmidt Ocean Institute. The resulting maps have recently been incorporated in Google Maps and Google Earth for viewing by researchers and the general public.
Paull has long suspected that rocks associated with the impact might be exposed along the Campeche Escarpment, a 600-kilometer-long underwater cliff just northwest of the Yucatán Peninsula. Nearly 4,000 meters tall, the Campeche Escarpment is one of the steepest and tallest underwater features on Earth. It is comparable to one wall of the Grand Canyon — except that it lies thousands of meters beneath the sea.
As in the walls of the Grand Canyon, sedimentary rock layers exposed on the face of the Campeche Escarpment provide a sequential record of the events that have occurred over millions of years. Based on the new maps, Paull believes that rocks formed before, during, and after the impact are all exposed along different parts of this underwater cliff.
Just as a geologist can walk the Grand Canyon, mapping layers of rock and collecting rock samples, Paull hopes to one day perform geologic “fieldwork” and collect samples along the Campeche Escarpment. Only a couple of decades ago, the idea of performing large-scale geological surveys thousands of meters below the ocean surface would have seemed a distant fantasy. Over the last eight years, however, such mapping has become almost routine for MBARI geologists using underwater robots.
The newly created maps of the Campeche Escarpment could open a new chapter in research about one of the largest extinction events in Earth’s history. Already researchers from MBARI and other institutions are using these maps to plan additional studies in this little-known area. Detailed analysis of the bathymetric data and eventual fieldwork on the escarpment will reveal fascinating new clues about what happened during the massive impact event that ended the age of the dinosaurs — clues that have been hidden beneath the waves for 65 million years.
In addition to the Schmidt Ocean Institute, Paull’s collaborators in this research included Jaime Urrutia-Fucugauchi from the Universidad Nacional Autónoma de Mexico and Mario Rebolledo- Vieyra of the Centro de Investigación Científica de Yucatán. Paull also worked closely with MBARI researchers, including geophysicist and software engineer Dave Caress, an expert on processing of multibeam sonar data, and geologist Roberto Gwiazda, who served as project manager and will be describing this research at the AGU meeting.
Clues to How Plants Evolved to Cope With Cold
Dec. 22, 2013 — Researchers have found new clues to how plants evolved to withstand wintry weather. In a study to appear in the December 22 issue of the journal Nature, the team constructed an evolutionary tree of more than 32,000 species of flowering plants — the largest time-scaled evolutionary tree to date. By combining their tree with freezing exposure records and leaf and stem data for thousands of species, the researchers were able to reconstruct how plants evolved to cope with cold as they spread across the globe. The results suggest that many plants acquired characteristics that helped them thrive in colder climates — such as dying back to the roots in winter — long before they first encountered freezing.
Fossil evidence and reconstructions of past climatic conditions suggest that early flowering plants lived in warm tropical environments, explained co-author Jeremy Beaulieu at the National Institute for Mathematical & Biological Synthesis (NIMBioS) at the University of Tennessee.
As plants spread to higher latitudes and elevations, they evolved in ways that helped them deal with cold conditions. Plants that live in the tundra, such as Arctic cinquefoil and three-toothed saxifrage, can withstand winter temperatures below minus 15 degrees Celsius.
Unlike animals, most plants can’t move to escape the cold or generate heat to keep them warm. It’s not so much the cold but the ice that poses problems for plants. For instance, freezing and thawing cause air bubbles to form in the plant’s internal water transport system.
“Think about the air bubbles you see suspended in the ice cubes,” said co-author Amy Zanne of the George Washington University. “If enough of these air bubbles come together as water thaws they can block the flow of water from the roots to the leaves and kill the plant.”
The researchers identified three traits that help plants get around these problems.
Some plants, such as hickories and oaks, avoid freezing damage by dropping their leaves before the winter chill sets in — effectively shutting off the flow of water between roots and leaves — and growing new leaves and water transport cells when warmer weather returns.
Other plants, such as birches and poplars, also protect themselves by having narrower water transport cells, which makes the parts of the plant that deliver water less susceptible to blockage during freezing and thawing.
Still others die back to the ground in winter and re-sprout from their roots, or start growing as new plants from seeds when conditions are right.
To compile the plant trait data for their study, the researchers spent hundreds of hours scouring and merging multiple large plant databases containing tens of thousands of species, largely with the support of the National Evolutionary Synthesis Center in North Carolina and Macquarie University in Australia.
When they mapped their collected leaf and stem data onto their evolutionary tree for flowering plants, they found that many plants were well equipped for icy climates even before cold conditions hit.
Plants that die back to the ground in winter, for example, acquired the ability to die and come back when conditions improve long before they first experienced freezing. Similarly, species with narrow water transport cells acquired a finer circulatory system well before they confronted cold climates.
“This suggests that some other environmental pressure — possibly drought — caused these plants to evolve this way, and it happened to work really well for freezing tolerance too,” said Zanne.
The only exceptions were plants that shed and replace their leaves seasonally — these plant groups didn’t gain the ability to drop their leaves during winter until after they encountered freezing, Beaulieu added.
As a next step, the researchers plan to use their evolutionary tree to find out how plants evolved to withstand other environmental stresses in addition to freezing, such as drought and heat.
First Snapshot of Organisms Eating Each Other: Feast Clue to Smell of Ancient Earth
Apr. 29, 2013 — Tiny 1,900 million-year-old fossils from rocks around Lake Superior, Canada, give the first ever snapshot of organisms eating each other and suggest what the ancient Earth would have smelled like.
The fossils, preserved in Gunflint chert, capture ancient microbes in the act of feasting on a cyanobacterium-like fossil called Gunflintia — with the perforated sheaths of Gunflintia being the discarded leftovers of this early meal.
A team, led by Dr David Wacey of the University of Western Australia and Bergen University, Norway, and Professor Martin Brasier of Oxford University, reports in this week’s Proceedings of the National Academy of Sciences the fossil evidence for how this type of feeding on organic matter — called ‘heterotrophy’ — was taking place. They also show that the ancient microbes appeared to prefer to snack on Gunflintia as a ‘tasty morsel’ in preference to another bacterium (Huroniospora).
‘What we call ‘heterotrophy’ is the same thing we do after dinner as the bacteria in our gut break down organic matter,’ said Professor Martin Brasier of Oxford University’s Department of Earth Sciences, an author of the paper. ‘Whilst there is chemical evidence suggesting that this mode of feeding dates back 3,500 million years, in this study for the first time we identify how it was happening and ‘who was eating who’. In fact we’ve all experienced modern bacteria feeding in this way as that’s where that ‘rotten egg’ whiff of hydrogen sulfide comes from in a blocked drain. So, rather surprisingly, we can say that life on earth 1,900 million years ago would have smelled a lot like rotten eggs.’
The team analysed the microscopic fossils, ranging from about 3-15 microns in diameter, using a battery of new techniques and found that one species — a tubular form thought to be the outer sheath of Gunflintia — was more perforated after death than other kinds, consistent with them having been eaten by bacteria.
In some places many of the tiny fossils had been partially or entirely replaced with iron sulfide (‘fool’s gold’) a waste product of heterotrophic sulfate-reducing bacteria that is also a highly visible marker. The team also found that these Gunflintia fossils carried clusters of even smaller (c.1 micron) spherical and rod-shaped bacteria that were seemingly in the process of consuming their hosts.
Dr Wacey said that: ‘recent geochemical analyses have shown that the sulfur-based activities of bacteria can likely be traced back to 3,500 million years or so — a finding reported by our group in Nature Geoscience in 2011. Whilst the Gunflint fossils are only about half as old, they confirm that such bacteria were indeed flourishing by 1,900 million years ago. And that they were also highly particular about what they chose to eat.’
New Fossils of Crocodilian, Hippo-Like Species from Panama
Mar. 5, 2013 — University of Florida paleontologists have discovered remarkably well-preserved fossils of two crocodilians and a mammal previously unknown to science during recent Panama Canal excavations that began in 2009.
The two new ancient extinct alligator-like animals and an extinct hippo-like species inhabited Central America during the Miocene about 20 million years ago. The research expands the range of ancient animals in the subtropics — some of the most diverse areas today about which little is known historically because lush vegetation prevents paleontological excavations — and may be used to better understand how climate change affects species dispersal today. The two studies appear online today in the same issue of the Journal of Vertebrate Paleontology.
The fossils shed new light on scientists’ understanding of species distribution because they represent a time before the formation of the Isthmus of Panama, when the continents of North and South America were separated by oceanic waters.
“In part we are trying to understand how ecosystems have responded to animals moving long distances and across geographic barriers in the past,” said study co-author Jonathan Bloch, associate curator of vertebrate paleontology at the Florida Museum of Natural History on the UF campus. “It’s a testing ground for things like invasive species — if you have things that migrated from one place into another in the past, then potentially you have the ability to look at what impact a new species might have on an ecosystem in the future.”
The research was funded by the National Science Foundation Panama Canal Partnerships in International Research and Education project, which supports paleontological excavation of the canal during construction expected to continue through 2014.
“We’re very fortunate we could get the funding for PIRE to take advantage of this opportunity — we’re getting to sample these areas that are completely unsampled,” said Alex Hastings, lead author of the crocodilian study and a visiting instructor at Georgia Southern University who conducted the research for the project as a UF graduate student.
Researchers analyzed all known crocodilian fossils from the Panama Canal, including the oldest records of Central American caimans, which are cousins of alligators. The more primitive species, named Culebrasuchus mesoamericanus, may represent an evolutionary transition between caimans and alligators, Hastings said.
“You mix an alligator and one of the more primitive caimans and you end up with this caiman that has a much flatter snout, making it more like an alligator,” Hastings said. “Before this, there were no fossil crocodilian skulls known from Central America.”
Christopher Brochu, an assistant professor of vertebrate paleontology in the department of geoscience at the University of Iowa, said “the caiman fossil record is tantalizing,” and the new data shows there is still a long way to go before researchers understand the group.
“The fossils that are in this paper are from a later time period, but some of them appear to be earlier-branching groups, which could be very important,” said Brochu, who was not involved with the study. “The problem is, because we know so little about early caiman history, it’s very difficult to tell where these later forms actually go on the family tree.”
The new mammal species researchers described is an anthracothere, Arretotherium meridionale, an even-toed hooved mammal previously thought to be related to living hippos and intensively studied on the basis of its hypothetical relationship with whales. About the size of a cow, the mammal would have lived in a semi-aquatic environment in Central America, said lead author and UF graduate student Aldo Rincon.
“With the evolution of new terrestrial corridors like this peninsula connecting North America with Central America, this is one of the most amazing examples of the different kind of paths land animals can take,” Rincon said. “Somehow this anthracothere is similar to anthracotheres from other continents like northern Africa and northeastern Asia.”
Researchers also name a second crocodilian species, Centenariosuchus gilmorei, after Charles Gilmore, who first reported evidence of crocodilian fossils collected during construction of the canal 100 years ago. The genus is named in honor of the canal’s centennial in 2014.
Researchers will continue excavating deposits from the Panama Canal during construction to widen and straighten the channel and build new locks. The project is funded by a $3.8 million NSF grant to develop partnerships between the U.S. and Panama and engage the next generation of scientists in paleontological and geological discoveries along the canal.
Study co-authors include Bruce MacFadden of UF and Carlos Jaramillo of the Smithsonian Tropical Research Institute.
Evolution and the Ice Age
Feb. 26, 2013 — Dr John Stewart has made important contributions to a growing body of work that shows how the evolution of ecosystems has to be taken into account when speculating between different geological eras. Go back to the time of the dinosaurs or to the single-celled organisms at the origins of life, and it is obvious that ecosystems existing more than 65 million years ago and around four billion years ago cannot be simply surmised from those of today.
Although the most drastic evolutionary changes occur over long spans of time, the effects can be seen relatively recently, argues Dr Stewart.
Stewart has studied the interaction between ancient ecosystems — paleoecology — and evolution of humans and other organisms over the past 100,000 years, undertaking everything from excavating cave sites in Belgium to exploring the desert of Abu Dhabi.
In one milestone collaborative study, Dr Stewart has taken existing knowledge of the geographical spread of plant and animal species throughout the warming and cooling of the Ice Ages to provide insights into human origins, including the evolution and extinction of Neanderthals.
He has also examined the rise of the ‘first Europeans’, along with the Denisovans — a newly discovered group — mysterious cousins of the Neanderthals, who occupied a vast realm stretching from the chill expanse of Siberia to the tropical forests of Indonesia.
The key insight in this work, conducted alongside Prof Chris Stringer of London’s Natural History Museum, came from understanding the important role of the refuge taken by a species from harsher conditions — known as a refugium — which has a tremendous influence on the evolutionary future of the species. Once the climate changes again, for instance as ice sheets melt, these refuges can expand or connect up again.
But, of course, there’s a twist. Evolution has also had a huge influence. The inhabitants are not the same as the original populations as a result of genetic mutations. The time spent apart in refuge generally serves to splinter a once unified species.
Previous research into hedgehogs, polar bears and other animals suggest that, even once an Ice Age ends and the different populations start intermingling again, they never really merge back together as a single group. This process drives important evolutionary changes, which can ultimately lead to the origins of a new species.
Ultimately, this explains why Homo sapiens are still here and our archaic human cousins went extinct some 30,000 years ago: our ancestors chose the right refuge to wait out the Ice Age.
Today, Dr Stewart’s work has shifted away from fossil remains to ancient DNA. Traditionally insights into the evolution of species have come from fossils, but we now know that the genetic changes that underlie a major change in body shape can be minor.
“The most exciting development in my field has been the ability to analyse ancient DNA, which has begun to allow us to see evolution happening over the last several dozen thousand years,” explains Dr Stewart.
His claim that climate change caused the Neanderthals’ demise is supported by work by Love Dalén at the Swedish Museum of Natural History in Stockholm, who has looked at the genes in 13 Neanderthal fossils found in southern Europe and western Asia.
All Neanderthal fossils more than 48,000 years old, and those found in Asia, had a higher level of genetic diversity than later European fossils, suggesting that the Neanderthals probably went through an evolutionary ‘bottleneck’ where a significant percentage of them perished.
When a bottleneck occurs, the remaining individuals are often a much less diverse group, which makes it more difficult for them to evolve and adapt to a changing environment.
Dr Stewart, who is doing DNA studies in collaboration with teams at the Natural History Museum in Stockholm and the Universities of York and Royal Holloway, is now focusing on using genetics to elucidate the evolution of a wide range of creatures.
He has conducted recent studies at the cave site of Trou Al’Wesse, a refugium once occupied by Neanderthals, in Belgium. He is studying how animal populations changed as a result of Ice Age climate change to understand the evolutionary processes that have taken place over the last 50,000 years.
But his work is not confined to the past. It informs the present too. Recently there had been a proposal to eradicate the Eagle Owl because it killed other birds, such as hen harriers, and was not thought to be a native species. But Dr Stewart’s studies of fossils and more recent archaeological records revealed the bird, or something like it, has been present in Britain for up to 700,000 years. The plan to cull the birds has now been abandoned.
And his research can help us predict the future. The fear is that our ever-expanding impact on the planet will trigger ecological collapse. But the only way to know for sure is to look back into the past.
“By studying how organisms have reacted to past climate change,” explains Dr Stewart, “we can learn lessons about what may take place due to human-caused global warming.”
Ancient Fossilized Sea Creatures Yield Oldest Biomolecules Isolated Directly from a Fossil
Feb. 18, 2013 — Though scientists have long believed that complex organic molecules couldn’t survive fossilization, some 350-million-year-old remains of aquatic sea creatures uncovered in Ohio, Indiana, and Iowa have challenged that assumption.
The spindly animals with feathery arms — called crinoids, but better known today by the plant-like name “sea lily” — appear to have been buried alive in storms during the Carboniferous Period, when North America was covered with vast inland seas. Buried quickly and isolated from the water above by layers of fine-grained sediment, their porous skeletons gradually filled with minerals, but some of the pores containing organic molecules were sealed intact.
That’s the conclusion of Ohio State University geologists, who extracted the molecules directly from individual crinoid fossils in the laboratory, and determined that different species of crinoid contained different molecules. The results will appear in the March issue of the journal Geology.
William Ausich, professor in the School of Earth Sciences at Ohio State and co-author of the paper, explained why the organic molecules are special.
“There are lots of fragmented biological molecules — we call them biomarkers — scattered in the rock everywhere. They’re the remains of ancient plant and animal life, all broken up and mixed together,” he said. “But this is the oldest example where anyone has found biomarkers inside a particular complete fossil. We can say with confidence that these organic molecules came from the individual animals whose remains we tested.”
The molecules appear to be aromatic compounds called quinones, which are found in modern crinoids and other animals. Quinones sometimes function as pigments or as toxins to discourage predators.
Lead author Christina O’Malley, who completed this work to earn her doctoral degree, first began the study when she noticed something strange about some crinoids that had perished side by side and become preserved in the same piece of rock: the different species were preserved in different colors.
In one rock sample used in the study, one crinoid species appears a light bluish-gray, while another appears dark gray and yet another more of a creamy white. All stand out from the color of the rock they were buried in. The researchers have since found similar fossil deposits from around the Midwest.
“People noticed the color differences 100 years ago, but no one ever investigated it,” O’Malley said. “The analytical tools were not available to do this kind of work as they are today.”
O’Malley isolated the molecules by grinding up small bits of fossil and dissolving them into a solution. Then she injected a tiny sample of the solution into a machine called a gas chromatograph mass spectrometer. The machine vaporized the solution so that a magnet could separate individual molecules based on electric charge and mass. Computer software identified the molecules as similar to quinones.
Then, with study co-author and Ohio State geochemist Yu-Ping Chin, she compared the organic molecules from the fossils with the molecules that are common in living crinoids today. Just as the researchers suspected, quinone-like molecules occur in both living crinoids and their fossilized ancestors.
Though different colored fossils contained different quinones, the researchers cautioned that there’s no way to tell whether the quinones functioned as pigments, or that the preserved colors as they appear today were similar to the colors that the crinoids had in life.
Part of why the crinoids were so well preserved has to do with the structure of their skeletons, the researchers said. Like sand dollars, crinoids have skin on top of a hard calcite shell. In the case of crinoids, their long bodies are made up of thousands of stacked calcite rings, and each ring is a single large calcite crystal that contains pores filled with living tissue. When a crinoid dies, the tissue will start to decay, but calcite will precipitate into the pores, and calcite is stable over geologic time. Thus, organic matter may become sealed whole within the rock.
“We think that rock fills in the skeleton according to how the crystals are oriented. So it’s possible to find large crystals filled in such a way that they have organic matter still trapped inside,” Ausich said.
The location of the fossils was also key to their preservation. In the flat American Midwest, the rocks weren’t pushed up into mountain chains or heated by volcanism, so from the Ohio State geologists’ perspective, they are pristine.
Their next challenge is to identify the exact type of quinone molecules they found, and determine how much information about individual species can be gleaned from them.
“These molecules are not DNA, and they’ll never be as good as DNA as a means to define evolutionary relationships, but they could still be useful,” Ausich said. “We suspect that there’s some kind of biological signal there — we just need to figure out how specific it is before we can use it as a means to track different species.”
This research was sponsored by the National Science Foundation and the Geological Society of America.
Ice Age Extinction Shaped Australian Plant Diversity
Feb. 12, 2013 — Researchers have shown that part of Australia’s rich plant diversity was wiped out by the ice ages, demonstrating that extinction, probably more than evolution, influences biodiversity.
The research led by the University of Melbourne and University of Tasmania has shown that plant diversity in South East Australia was as rich as some of the most diverse places in the world, and that most of these species went extinct during the ice ages, probably about one million years ago.
The team’s work was recently published in the Proceedings of the National Academy of Sciences.
Dr Sniderman of the University of Melbourne’s School of Earth Sciences said the findings show extinction is just as important to diversity of organisms as evolution.
“Traditionally scientists believed some places have more species than others because species evolved more rapidly in these places. We have overthrown this theory, which emphasizes evolution, by showing that extinction may be more important, ” he said.
The study compared two regions of Southern Australia and South Africa.
“South-western Australia has a huge diversity of tough-leaved shrubs and trees such as eucalypts, Banksia, Grevilleas and Acacias, making it one of the most biodiverse places on Earth,” Dr Sniderman said.
“The southern tip of South Africa is even richer, with astonishing numbers of similar kinds of plants like proteas and ericas.”
Scientists have long maintained that this diversity is somehow related to the poor soils and dry summers of these places.
For the study researchers analysed plant fossils that accumulated in an ancient lake in South Eastern Australia. They found the region had at least as many tough-leaved plants 1.5 million years ago as Western Australia and South Africa do today.
The results were entirely unexpected.
“As Australia dried out over the past several million years, rainforest plants largely disappeared from most of the continent,” said Dr Sniderman
“It has been thought that this drying trend allowed Australia’s characteristic tough-leaved plants to expand and became more diverse. We have shown that the climate variability of the ice ages not only drove rainforest plants to extinction but also a remarkable number of tough-leaved, shrubby plants,” he said. Dr Greg Jordan of the School of Plant Sciences at the University of Tasmanian said not only has the study overturned current thought on the role of extinction in plant diversity, it has implications for understanding how Australian plant diversity will deal with current and future climate change.
“The species that went extinct in SE Australia during the ice ages were likely to be the ones most sensitive to rapid climate change, meaning that the species that now grow in eastern Australia may be more capable of tolerating rapid changes than predicted by current science,” he said.
“However, the species in hotspots of diversity like Western Australia may be much more sensitive to future climate change, because they have been protected from past climate changes.”
The study was done in collaboration with the Nelson Mandela Metropolitan University in South Africa.