New starfish-like fossil reveals evolution in action

Researchers from the University of Cambridge have discovered a fossil of the earliest starfish-like animal, which helps us understand the origins of the nimble-armed creature.

The prototype starfish, which has features in common with both sea lilies and modern-day starfish, is a missing link for scientists trying to piece together its early evolutionary history.

The exceptionally preserved fossil, named Cantabrigiaster fezouataensis, was discovered in Morroco’s Anti-Atlas mountain range. Its intricate design — with feathery arms akin to a lacework — has been frozen in time for roughly 480 million years.

The new species is unusual because it doesn’t have many of the key features of its contemporary relatives, lacking roughly 60% of a modern starfish’s body plan.

The fossil’s features are instead a hybrid between those of a starfish and a sea lily or crinoid — not a plant but a wavy-armed filter feeder which fixes itself to the seabed via a cylindrical ‘stem’.

The discovery, reported in Biology Letters, captures the early evolutionary steps of the animal at a time in Earth’s history when life suddenly expanded, a period known as the Ordovician Biodiversification Event.

The find also means scientists can now use the new find as a template to work out how it evolved from this more basic form to the complexity of their contemporaries.

“Finding this missing link to their ancestors is incredibly exciting. If you went back in time and put your head under the sea in the Ordovician then you wouldn’t recognize any of the marine organisms — except the starfish, they are one of the first modern animals,” said lead author Dr Aaron Hunter, a visiting postdoctoral researcher in the Department of Earth Sciences.

Modern starfish and brittle stars are part of a family of spiny-skinned animals called the echinoderms which, although they don’t have a backbone, are one of the closest group of animals to vertebrates. Crinoids, and otherworldly creatures like the sea urchins and sea cucumbers are all echinoderms.

The origin of starfish has eluded scientists for decades. But the new species is so well preserved that its body can finally be mapped in detail and its evolution understood. “The level of detail in the fossil is amazing — its structure is so complex that it took us a while to unravel its significance,” said Hunter.

It was Hunter’s work on both living and fossil echinoderms that helped him spot its hybrid features. “I was looking at a modern crinoid in one of the collections at the Western Australian Museum and I realised the arms looked really familiar, they reminded me of this unusual fossil that I had found years earlier in Morocco but had found difficult to work with,” he said.

Fezouata in Morocco is something of a holy grail for palaeontologists — the new fossil is just one of the many remarkably well preserved soft-bodied animals uncovered from the site.

Hunter and co-author Dr Javier Ortega-Hernández, who was previously based at Cambridge’s Department of Zoology and is now based at Harvard University, named the species Cantabrigiaster in honour of the long history of echinoderm research at their respective institutions.

Hunter and Ortega-Hernández examined their new species alongside a catalogue of hundreds starfish-like animals. They indexed all of their body structures and features, building a road map of the echinoderm skeleton which they could use to assess how Cantabrigiaster was related to other family members.

Modern echinoderms come in many shapes and sizes, so it can be difficult to work out how they are related to one another. The new analysis, which uses extra-axial theory — a biology model usually only applied to living species — meant that Hunter and Ortega-Hernández could identify similarities and differences between the body plan of modern echinoderms and then figure out how each family member was linked to their Cambrian ancestors.

They found that only the key or axial part of the body, the food groove — which funnels food along each of the starfish’s arms — was present in Cantabrigiaster. Everything outside this, the extra-axial body parts, were added later.

The authors plan to expand their work in search of early echinoderms. “One thing we hope to answer in the future is why starfish developed their five arms,” said Hunter. “It seems to be a stable shape for them to adopt — but we don’t yet know why. We still need to keep searching for the fossil that gives us that particular connection, but by going right back to the early ancestors like Cantabrigiaster we are getting closer to that answer.”


Story Source:

Materials provided by University of Cambridge. The original story is licensed under a Creative Commons LicenseNote: Content may be edited for style and length.


Journal Reference:

  1. Aaron W. Hunter, Javier Ortega-Hernández. A new somasteroid from the Fezouata Lagerstätte in Morocco and the Early Ordovician origin of AsterozoaBiology Letters, 2021; 17 (1): 20200809 DOI: 10.1098/rsbl.2020.0809

All-purpose dinosaur opening reconstructed

For the first time ever, a team of scientists, led by the University of Bristol, have described in detail a dinosaur’s cloacal or vent — the all-purpose opening used for defecation, urination and breeding.

Although most mammals may have different openings for these functions, most vertebrate animals possess a cloaca.

Although we know now much about dinosaurs and their appearance as feathered, scaly and horned creatures and even which colours they sported, we have not known anything about how the vent appears.

Dr Jakob Vinther from the University of Bristol’s School of Earth Sciences, along with colleagues Robert Nicholls, a palaeoartist, and Dr Diane Kelly, an expert on vertebrate penises and copulatory systems from the University of Massachusetts Amherst, have now described the first cloacal vent region from a small Labrador-sized dinosaur called Psittacosaurus, comparing it to vents across modern vertebrate animals living on land.

Dr Vinther said: “I noticed the cloaca several years ago after we had reconstructed the colour patterns of this dinosaur using a remarkable fossil on display at the Senckenberg Museum in Germany which clearly preserves its skin and colour patterns.

“It took a long while before we got around to finish it off because no one has ever cared about comparing the exterior of cloacal openings of living animals, so it was largely unchartered territory.”

Dr Kelly added: “Indeed, they are pretty non-descript. We found the vent does look different in many different groups of tetrapods, but in most cases it doesn’t tell you much about an animal’s sex.

“Those distinguishing features are tucked inside the cloaca, and unfortunately, they’re not preserved in this fossil.”

The cloaca is unique in its appearance but exhibits features reminiscent to living crocodylians such as alligators and crocodiles, which are the closest living relatives to dinosaurs and other birds.

The researchers note that the outer margins of the cloaca are highly pigmented with melanin. They argue that this pigmentation provided the vent with a function in display and signalling, similar to living baboons and some breeding salamanders.

The authors also speculate that the large, pigmented lobes on either side of the opening could have harboured musky scent glands, as seen in living crocodylians.

Birds are one the few vertebrate groups that occasionally exhibit visual signalling with the cloaca, which the scientists now can extend back to the Mesozoic dinosaur ancestors.

Robert Nicholls said: “As a palaeoartist, it has been absolutely amazing to have an opportunity to reconstruct one of the last remaining features we didn’t know anything about in dinosaurs.

“Knowing that at least some dinosaurs were signalling to each other gives palaeoartists exciting freedom to speculate on a whole variety of now plausible interactions during dinosaur courtship. It is a game changer!”


Story Source:

Materials provided by University of BristolNote: Content may be edited for style and length.

A new archaeology for the Anthropocene era

ndiana Jones and Lara Croft have a lot to answer for. Public perceptions of archaeology are often thoroughly outdated, and these characterisations do little to help.

Yet archaeology as practiced today bears virtually no resemblance to the tomb raiding portrayed in movies and video games. Indeed, it bears little resemblance to even more scholarly depictions of the discipline in the entertainment sphere.

A paper published today in Nature Ecology and Evolution aims to give pause to an audience that has been largely prepared to take such out-of-touch depictions at face value. It reveals an archaeology practiced by scientists in white lab coats, using multi-million-euro instrumentation and state of the art computers.

It also reveals an archaeology poised to contribute in major ways to addressing such thoroughly modern challenges as biodiversity conservation, food security and climate change.

“Archaeology today is a dramatically different discipline to what it was a century ago,” observes Nicole Boivin, lead author of the study and Director of the Institute’s Department of Archaeology. “While the tomb raiding we see portrayed in movies is over the top, the archaeology of the past was probably closer to this than to present-day archaeology. Much archaeology today is in contrast highly scientific in orientation, and aimed at addressing modern-day issues.”

Examining the research contributions of the field over the past few decades, the authors reach a clear conclusion — archaeology today has a great deal to contribute to addressing the challenges of the modern era.

“Humans in the present era have become one of the great forces shaping nature,” emphasizes Alison Crowther, coauthor and researcher at both the University of Queensland and the MPI Science of Human History. “When we say we have entered a new, human-dominated geological era, the Anthropocene, we acknowledge that role.”

How can archaeology, a discipline focused on the past, hope to address the challenges we face in the Anthropocene?

“It is clear that the past offers a vast repertoire of cultural knowledge that we cannot ignore,” highlights Professor Boivin.

The two researchers show the many ways that data about the past can serve the future. By analysing what worked and didn’t work in the past — effectively offering long-term experiments in human society — archaeologists gain insight into the factors that support sustainability and resilience, and the factors that work against them. They also highlight ancient solutions to modern problems.

“We show how researchers have improved the modern world by drawing upon information about the ways people in the past enriched soils, prevented destructive fires, created greener cities and transported water without fossil fuels,” notes Dr. Crowther.

People also continue to use, and adapt, ancient technologies and infrastructure, including terrace and irrigation systems that are in some cases centuries or even millennia old.

But the researchers are keen to highlight the continued importance of technological and social solutions to climate change and the other challenges of the Anthropocene.

“It’s not about glorifying the past, or vilifying progress,” emphasizes Professor Boivin. “Instead, it’s about bringing together the best of the past, present and future to steer a responsible and constructive course for humanity.”

Story Source:

Materials provided by Max Planck Institute for the Science of Human HistoryNote: Content may be edited for style and length.


Journal Reference:

  1. Nicole Boivin, Alison Crowther. Mobilizing the past to shape a better AnthropoceneNature Ecology & Evolution, 2021; DOI: 10.1038/s41559-020-01361-4

New flower from 100 million years ago

Oregon State University researchers have identified a spectacular new genus and species of flower from the mid-Cretaceous period, a male specimen whose sunburst-like reach for the heavens was frozen in time by Burmese amber.

“This isn’t quite a Christmas flower but it is a beauty, especially considering it was part of a forest that existed 100 million years ago,” said George Poinar Jr., professor emeritus in the OSU College of Science.

Findings were published in the Journal of the Botanical Research Institute of Texas.

“The male flower is tiny, about 2 millimeters across, but it has some 50 stamens arranged like a spiral, with anthers pointing toward the sky,” said Poinar, an international expert in using plant and animal life forms preserved in amber to learn more about the biology and ecology of the distant past.

A stamen consists of an anther — the pollen-producing head — and a filament, the stalk that connects the anther to the flower.

“This isn’t quite a Christmas flower but it is a beauty, especially considering it was part of a forest that existed 100 million years ago,” said George Poinar Jr., professor emeritus in the OSU College of Science.

Findings were published in the Journal of the Botanical Research Institute of Texas.

“Despite being so small, the detail still remaining is amazing,” Poinar said. “Our specimen was probably part of a cluster on the plant that contained many similar flowers, some possibly female.”

The new discovery has an egg-shaped, hollow floral cup — the part of the flower from which the stamens emanate; an outer layer consisting of six petal-like components known as tepals; and two-chamber anthers, with pollen sacs that split open via laterally hinged valves.

Poinar and collaborators at OSU and the U.S. Department of Agriculture named the new flower Valviloculus pleristaminis. Valva is the Latin term for the leaf on a folding door, loculus means compartment, plerus refers to many, and staminis reflects the flower’s dozens of male sex organs.

The flower became encased in amber on the ancient supercontinent of Gondwana and rafted on a continental plate some 4,000 miles across the ocean from Australia to Southeast Asia, Poinar said.

Geologists have been debating just when this chunk of land — known as the West Burma Block — broke away from Gondwana. Some believe it was 200 million years ago; others claim it was more like 500 million years ago.

Numerous angiosperm flowers have been discovered in Burmese amber, the majority of which have been described by Poinar and a colleague at Oregon State, Kenton Chambers, who also collaborated on this research.

Angiosperms are vascular plants with stems, roots and leaves, with eggs that are fertilized and develop inside the flower.

Since angiosperms only evolved and diversified about 100 million years ago, the West Burma Block could not have broken off from Gondwana before then, Poinar said, which is much later than dates that have been suggested by geologists.

Joining Poinar and Chambers, a botany and plant pathology researcher in the OSU College of Agricultural Sciences, on the paper were Oregon State’s Urszula Iwaniec and the USDA’s Fernando Vega. Iwaniec is a researcher in the Skeletal Biology Laboratory in the College of Public Health and Human Sciences and Vega works in the Sustainable Perennial Crops Laboratory in Beltsville, Maryland.

Story Source:

Materials provided by Oregon State University. Original written by Steve Lundeberg. Note: Content may be edited for style and length.

“The male flower is tiny, about 2 millimeters across, but it has some 50 stamens arranged like a spiral, with anthers pointing toward the sky,” said Poinar, an international expert in using plant and animal life forms preserved in amber to learn more about the biology and ecology of the distant past.

A stamen consists of an anther — the pollen-producing head — and a filament, the stalk that connects the anther to the flower.