Mass strandings of marine mammals blamed on toxic algae: Clues unearthed in ancient whale graveyard
Mass strandings of whales have puzzled people since Aristotle. Modern-day strandings can be investigated and their causes, often human-related, identified. Events that happened millions of years ago, however, are far harder to analyze — frequently leaving their cause a mystery. A team of Smithsonian and Chilean scientists examined a large fossil site of ancient marine mammal skeletons in the Atacama Desert of Northern Chile — the first definitive example of repeated mass strandings of marine mammals in the fossil record. The site reflected four distinct strandings over time, indicating a repeated and similar cause: toxic algae. The team’s findings will be published Feb. 26 in the Proceedings of the Royal Society B.
The site was first discovered during an expansion project of the Pan-American Highway in 2010. The following year, paleontologists from the Smithsonian and Chile examined the fossils, dating 6-9 million years ago, and recorded what remained before the site was paved over.
The team documented the remains of 10 kinds of marine vertebrates from the site, named Cerro Ballena — Spanish for “whale hill.” In addition to the skeletons of the more than 40 large baleen whales that dominated the site, the team documented the remains of a species of sperm whale and a walrus-like whale, both of which are now extinct. They also found skeletons of billfishes, seals and aquatic sloths.
What intrigued the team most, however, was how the skeletons were arranged. The skeletons were preserved in four separate levels, pointing to a repeated and similar underlying cause. The skeletons’ orientation and condition indicated that the animals died at sea, prior to burial on a tidal flat.
Effects of Toxic Algae
Today, toxins from harmful algal blooms, such as red tides, are one of the prevalent causes for repeated mass strandings that include a wide variety of large marine animals.
“There are a few compelling modern examples that provide excellent analogs for the patterns we observed at Cerro Ballena — in particular, one case from the late 1980s when more than a dozen humpback whales washed ashore near Cape Cod, with no signs of trauma, but sickened by mackerel loaded with toxins from red tides,” said Nicholas Pyenson, paleontologist at the Smithsonian’s National Museum of Natural History and lead author of the research. “Harmful algal blooms in the modern world can strike a variety of marine mammals and large predatory fish. The key for us was its repetitive nature at Cerro Ballena: no other plausible explanation in the modern world would be recurring, except for toxic algae, which can recur if the conditions are right.”
Harmful algal blooms are common along the coasts of continents; they are enhanced by vital nutrients, such as iron, released during erosion and carried by rivers flowing into the ocean. Because the Andes of South America are iron-rich, the runoff that has occurred along the west coast of South America for more than 20 million years has long provided the ideal conditions for harmful algal blooms to form.
From their research, the scientists conclude that toxins generated by harmful algal blooms most likely poisoned many ocean-going vertebrates near Cerro Ballena in the late Miocene (5-11 million years ago) through ingestion of contaminated prey or inhalation, causing relatively rapid death at sea. Their carcasses then floated toward the coast, where they were washed into a tidal flat by waves. Once stranded on the tidal flat, the dead or dying animals were protected from marine scavengers, and there were no large-land scavengers in South America at this time. Eventually, the carcasses were buried by sand. Because there are four layers at Cerro Ballena, this pathway from sea to land occurred four different times during a period of 10,000 to 16,000 years in the same area.
“Cerro Ballena is the densest site for individual fossil whales and other extinct marine mammals in entire world, putting it on par with the La Brea Tar Pits or Dinosaur National Monument in the U.S.,” Pyenson said. “The site preserves marine predators that are familiar to modern eyes, like large whales and seals. However, it also preserves extinct and bizarre marine mammals, including walrus-like whales and aquatic sloths. In this way, the site is an amazing and rare snapshot of ancient marine ecosystems along the coast of South America.”
3-D Technology at Cerro Ballena
Because the site was soon to be covered by the Pan-American Highway, time was very limited for the researchers. A major solution came in the form of 3-D technology. Pyenson brought a team of Smithsonian 3-D imaging experts to Chile, who spent a week scanning the entire dig site.
Although all the fossils found from 2010 to 2013 have been moved to museums in the Chilean cities of Caldera and Santiago, the Smithsonian has archived the digital data, including the 3-D scans, from the site at cerroballena.si.edu. There, anyone can download or interact with 3-D models of the fossil whale skeletons, scan Google Earth maps of the excavation quarries, look at a vast collection of high-resolution field photos and videos or take 360-degree tours of the site.
The enormous wealth of fossils that the team examined represents only a fraction of the potential at Cerro Ballena, which remains unexcavated. The scientists conservatively estimate that the entire area preserves several hundred fossil marine mammal skeletons, awaiting discovery. Pyenson’s colleagues at the Universidad de Chile in Santiago are actively working to create a research station near the fossils of Cerro Ballena so that those that have been collected and those still covered by sediments can be protected for posterity.
First discovery of dinosaur fossils in Malaysia
A team of palaeontology researchers from the Department of Geology, Faculty of Science, University of Malaya and Japanese universities (Waseda University and Kumamoto University) has found dinosaur fossil teeth in the rural interiors of Pahang — the first known discovery of dinosaur remains in Malaysia.
“Acting as a team leader, and one of the collaborators, Professor Ren Hirayama from Waseda University (Tokyo), a specialist in reptile palaeontology, identified that one of the teeth, Sample UM10575, belongs to a spinosaurid dinosaur (known as a carnivorous “fish-eating” dinosaur),” he added.
UM10575 is about 23mm long and 10mm wide. It develops fairly distinct carinae (front and rear edges) with serrations, typical to a tooth of a theropod (carnivorous dinosaur). Well-marked coarse ridges are developed on the surface of the tooth, and the surface bears micro-ornament (very fine sculptures); these characterise a spinosaurid tooth.
The new fossils were found from sedimentary rock strata of late Mesozoic age, most likely Cretaceous (ca. 145-75 million years ago). In the interior of Peninsular Malaysia, Jurassic¬-Cretaceous sediments are known to be widely distributed, so that the team researchers have targeted a potential dinosaur deposit there since.
It is expected that large deposits of dinosaur fossils still remain in Malaysia. We currently continue further research and hope to conduct more extensive field investigations that may disclose more significant finds.
Alongside making the public announcement of this discovery, it is urgent to take measures for the protection and conservation of the present fossil site (and to make it accessible only to the qualified researchers). Since the site is in the open area, it is concerned that, once the public is aware, some destruction due to lawless excavations by private fossil collectors and/or robbers may happen, as has happened, for example, in Thailand, Laos, and Mongolia.
It is also hoped that the current discovery can lead to development of palaeontology study in the country and to eventually establish a Malaysian dinosaur museum in a near future.
Revision to rules for color in dinosaurs suggests connection between color and physiology
New research that revises the rules allowing scientists to decipher color in dinosaurs may also provide a tool for understanding the evolutionary emergence of flight and changes in dinosaur physiology prior to its origin.
In a survey comparing the hair, skin, fuzz and feathers of living terrestrial vertebrates and fossil specimens, a research team from The University of Texas at Austin, the University of Akron, the China University of Geosciences and four other Chinese institutions found evidence for evolutionary shifts in the rules that govern the relationship between color and the shape of pigment-containing organelles known as melanosomes, as reported in the Feb. 13 edition of Nature.
At the same time, the team unexpectedly discovered that ancient maniraptoran dinosaurs, paravians, and living mammals and birds uniquely shared the evolutionary development of diverse melanosome shapes and sizes. (Diversity in the shape and size of melanosomes allows scientists to decipher color.) The evolution of diverse melanosomes in these organisms raises the possibility that melanosome shape and size could yield insights into dinosaur physiology.
Melanosomes have been at the center of recent research that has led scientists to suggest the colors of ancient fossil specimens covered in fuzz or feathers.
Melanosomes contain melanin, the most common light-absorbing pigment found in animals. Examining the shape of melanosomes from fossil specimens, scientists have recently suggested the color of several ancient species, including the fuzzy first-discovered feathered dinosaur Sinosauropteryx, and feathered species like Microraptor and Anchiornis.
According to the new research, color-decoding works well for some species, but the color of others may be trickier than thought to reconstruct.
Comparing melanosomes of 181 extant specimens, 13 fossil specimens and all previously published data on melanosome diversity, the researchers found that living turtles, lizards and crocodiles, which are ectothermic (commonly known as cold-blooded), show much less diversity in the shape of melanosomes than birds and mammals, which are endothermic (warm-blooded, with higher metabolic rates).
The limited diversity in melanosome shape among living ectotherms shows little correlation to color. The same holds true for fossil archosaur specimens with fuzzy coverings scientists have described as “protofeathers” or “pycnofibers.” In these specimens, melanosome shape is restricted to spherical forms like those in modern reptiles, throwing doubt on the ability to decipher the color of these specimens from fossil melanosomes.
In contrast, in the dinosaur lineage leading to birds, the researchers found an explosion in the diversity of melanosome shape and size that appears to correlate to an explosion of color within these groups. The shift in diversity took place abruptly, near the origin of pinnate feathers in maniraptoran dinosaurs.
“This points to a profound change at a pretty discrete point,” says author Julia Clarke of The University of Texas at Austin’s Jackson School of Geosciences. “We’re seeing an explosion of melanosome diversity right before the origin of flight associated with the origin of feathers.”
What surprised the researchers was a similarity in the pattern of melanosome diversity among ancient maniraptoran dinosaurs, paravians, and living mammals and birds.
“Only in living, warm-blooded vertebrates that independently evolved higher metabolic rates do we see the melanosome diversity we also see in feathered dinosaurs,” said co-author Matthew Shawkey of The University of Akron.
Many of the genes involved in the melanin color system are also involved in other core processes such as food intake, the stress axis, and reproductive behaviors. Because of this, note the researchers, it is possible that the evolution of diverse melanosome shapes is linked to larger changes in energetics and physiology.
Melanosome shape could end up offering a new tool for studying endothermy in fossil specimens, a notoriously challenging subject for paleontologists.
Because the explosion of diversity in melanosomes appears to have taken place right at the origin of pinnate feathers, the change may indicate that a key shift in dinosaurian physiology occurred prior to the origin of flight.
“We are far from understanding the exact nature of the shift that may have occurred,” says Clarke. “But if changes in genes involved in both coloration and other aspects of physiology explain the pattern we see, these precede flight and arise close to the origin of feathers.”
It is possible, notes Clarke, that a diversity in melanosome shape (and correlated color changes) resulted from an increased evolutionary role for signaling and sexual selection that had a carryover effect on physiology, or that a change in physiology closely preceded changes in color patterning. At this point, she stresses, both ideas are speculative.
“What is interesting is that trying to get at color in extinct animals may have just started to give us some insights into changes in the physiology of dinosaurs.”
Giant mass extinction quicker than previously thought: End-Permian extinction happened in 60,000 years
The largest mass extinction in the history of animal life occurred some 252 million years ago, wiping out more than 96 percent of marine species and 70 percent of life on land — including the largest insects known to have inhabited Earth. Multiple theories have aimed to explain the cause of what’s now known as the end-Permian extinction, including an asteroid impact, massive volcanic eruptions, or a cataclysmic cascade of environmental events. But pinpointing the cause of the extinction requires better measurements of how long the extinction period lasted.
Now researchers at MIT have determined that the end-Permian extinction occurred over 60,000 years, give or take 48,000 years — practically instantaneous, from a geologic perspective. The new timescale is based on more precise dating techniques, and indicates that the most severe extinction in history may have happened more than 10 times faster than scientists had previously thought.
“We’ve got the extinction nailed in absolute time and duration,” says Sam Bowring, the Robert R. Shrock Professor of Earth and Planetary Sciences at MIT. “How do you kill 96 percent of everything that lived in the oceans in tens of thousands of years? It could be that an exceptional extinction requires an exceptional explanation.”
In addition to establishing the extinction’s duration, Bowring, graduate student Seth Burgess, and a colleague from the Nanjing Institute of Geology and Paleontology also found that, 10,000 years before the die-off, the oceans experienced a pulse of light carbon, which likely reflects a massive addition of carbon dioxide to the atmosphere. This dramatic change may have led to widespread ocean acidification and increased sea temperatures by 10 degrees Celsius or more, killing the majority of sea life.
But what originally triggered the spike in carbon dioxide? The leading theory among geologists and paleontologists has to do with widespread, long-lasting volcanic eruptions from the Siberian Traps, a region of Russia whose steplike hills are a result of repeated eruptions of magma. To determine whether eruptions from the Siberian Traps triggered a massive increase in oceanic carbon dioxide, Burgess and Bowring are using similar dating techniques to establish a timescale for the Permian period’s volcanic eruptions that are estimated to have covered over five million cubic kilometers.
“It is clear that whatever triggered extinction must have acted very quickly,” says Burgess, the lead author of a paper that reports the results in this week’s Proceedings of the National Academy of Sciences, “fast enough to destabilize the biosphere before the majority of plant and animal life had time to adapt in an effort to survive.”
Pinning dates on an extinction
In 2006, Bowring and his students made a trip to Meishan, China, a region whose rock formations bear evidence of the end-Permian extinction; geochronologists and paleontologists have flocked to the area to look for clues in its layers of sedimentary rock. In particular, scientists have focused on a section of rock that is thought to delineate the end of the Permian, and the beginning of the Triassic, based on evidence such as the number of fossils found in surrounding rock layers.
Bowring sampled rocks from this area, as well as from nearby alternating layers of volcanic ash beds and fossil-bearing rocks. After analyzing the rocks in the lab, his team reported in 2011 that the end-Permian likely lasted less than 200,000 years. However, this timeframe still wasn’t precise enough to draw any conclusions about what caused the extinction.
Now, the team has revised its estimates using more accurate dating techniques based on a better understanding of uncertainties in timescale measurements.
With this knowledge, Bowring and his colleagues reanalyzed rock samples collected from five volcanic ash beds at the Permian-Triassic boundary. The researchers pulverized rocks and separated out tiny zircon crystals containing a mix of uranium and lead. They then isolated uranium from lead, and measured the ratios of both isotopes to determine the age of each rock sample.
From their measurements, the researchers determined a much more precise “age model” for the end-Permian extinction, which now appears to have lasted about 60,000 years — with an uncertainty of 48,000 years — and was immediately preceded by a sharp increase in carbon dioxide in the oceans.
‘Spiraling toward the truth’
The new timeline adds weight to the theory that the extinction was triggered by massive volcanic eruptions from the Siberian Traps that released volatile chemicals, including carbon dioxide, into the atmosphere and oceans. With such a short extinction timeline, Bowring says it is possible that a single, catastrophic pulse of magmatic activity triggered an almost instantaneous collapse of all global ecosystems.
To confirm whether the Siberian Traps are indeed the extinction’s smoking gun, Burgess and Bowring plan to determine an equally precise timeline for the Siberian Traps eruptions, and will compare it to the new extinction timeline to see where the two events overlap. The researchers will investigate additional areas in China to see if the duration of the extinction can be even more precisely determined.
“We’ve refined our approach, and now we have higher accuracy and precision,” Bowring says. “You can think of it as slowly spiraling in toward the truth.”
Meet Xenoceratops: Canada’s Newest Horned Dinosaur
Nov. 8, 2012 — Scientists have named a new species of horned dinosaur (ceratopsian) from Alberta, Canada. Xenoceratops foremostensis (Zee-NO-Sare-ah-tops) was identified from fossils originally collected in 1958. Approximately 20 feet long and weighing more than 2 tons, the newly identified plant-eating dinosaur represents the oldest known large-bodied horned dinosaur from Canada
Research describing the new species is published in the October 2012 issue of the Canadian Journal of Earth Sciences.
“Starting 80 million years ago, the large-bodied horned dinosaurs in North America underwent an evolutionary explosion,” said lead author Dr. Michael Ryan, curator of vertebrate paleontology at The Cleveland Museum of Natural History. “Xenoceratops shows us that even the geologically oldest ceratopsids had massive spikes on their head shields and that their cranial ornamentation would only become more elaborate as new species evolved.”
Xenoceratops (Xeno + ceratops) means “alien horned-face,” referring to the strange pattern of horns on its head and the scarcity of horned dinosaur fossils from this part of the fossil record. It also honors the Village of Foremost, located close to where the dinosaur was discovered. Xenoceratops had a parrot-like beak with two long brow horns above its eyes. A large frill protruded from the back of its skull featuring two huge spikes.
“Xenoceratops provides new information on the early evolution of ceratopsids, the group of large-bodied horned dinosaurs that includes Triceratops,” said co-author Dr. David Evans of the Royal Ontario Museum and University of Toronto. “The early fossil record of ceratopsids remains scant, and this discovery highlights just how much more there is to learn about the origin of this diverse group.”
The new dinosaur is described from skull fragments from at least three individuals from the Foremost Formation originally collected by Dr. Wann Langston Jr. in the 1950s, and is currently housed in the Canadian Museum of Nature in Ottawa, Canada. Ryan and Evans stumbled upon the undescribed material more than a decade ago and recognized the bones as a new type of horned dinosaur. Evans later discovered a 50-year-old plaster field jacket at the Canadian Museum of Nature containing more skull bones from the same fossil locality and had them prepared in his lab at the Royal Ontario Museum.
This dinosaur is just the latest in a series of new finds being made by Ryan and Evans as part of their Southern Alberta Dinosaur Project, which is designed to fill in gaps in our knowledge of Late Cretaceous dinosaurs and study their evolution. This project focuses on the paleontology of some of the oldest dinosaur-bearing rocks in Alberta, which is less intensely studied than that of the famous badlands of Dinosaur Provincial Park and Drumheller.
“This discovery of a previously unknown species also drives home the importance of having access to scientific collections,” says co-author Kieran Shepherd, curator of paleobiology for the Canadian Museum of Nature, which holds the specimen. “The collections are an untapped source of new material for study, and offer the potential for many new discoveries.”
Xenoceratops was identified by a team comprising palaeontologists Dr. Michael J. Ryan, curator of vertebrate paleontology at The Cleveland Museum of Natural History; and Dr. David Evans, curator, vertebrate palaeontology of the Department of Natural History at the Royal Ontario Museum; as well as Kieran Shepherd, curator of paleobiology for the Canadian Museum of Nature.
Functional Importance of Dinosaur Beaks Illuminated
Dec. 2, 2013 — Why beaks evolved in some theropod dinosaurs and what their function might have been is the subject of new research by an international team of palaeontologists published this week in PNAS (Proceedings of the National Academy of Sciences).
Beaks are a typical hallmark of modern birds and can be found in a huge variety of forms and shapes. However, it is less well known that keratin-covered beaks had already evolved in different groups of dinosaurs during the Cretaceous Period.
Employing high-resolution X-ray computed tomography (CT scanning) and computer simulations, Dr Stephan Lautenschlager and Dr Emily Rayfield of the University of Bristol with Dr Perle Altangerel (National University of Ulaanbaatar) and Professor Lawrence Witmer (Ohio University) used digital models to take a closer look at these dinosaur beaks.
The focus of the study was the skull of Erlikosaurus andrewsi, a 3-4m (10-13ft) large herbivorous dinosaur called a therizinosaur, which lived more than 90 million years ago during the Cretaceous Period in what is now Mongolia, and which shows evidence that part of its snout was covered by a keratinous beak.
This new study reveals that keratinous beaks played an important role in stabilizing the skeletal structure during feeding, making the skull less susceptible to bending and deformation.
Lead author Dr Stephan Lautenschlager of Bristol’s School of Earth Sciences said: “It has classically been assumed that beaks evolved to replace teeth and thus save weight, as a requirement for the evolution of flight. Our results, however, indicate that keratin beaks were in fact beneficial to enhance the stability of the skull during biting and feeding.”
Co-author Dr Emily Rayfield, Reader of Palaeobiology at Bristol said: “Using Finite Element Analysis, a computer modelling technique routinely used in engineering, we were able to deduce very accurately how bite and muscle forces affected the skull of Erlikosaurus during the feeding process. This further allowed us to identify the importance of soft-tissue structures, such as the keratinous beak, which are normally not preserved in fossils.”
Co-author Lawrence Witmer, Chang Professor of Paleontology at the Ohio University Heritage College of Osteopathic Medicine said: “Beaks evolved several times during the transitions from dinosaurs to modern birds, usually accompanied by the partial or complete loss of teeth and our study now shows that keratin-covered beaks represent a functional innovation during dinosaur evolution.”
This work was funded by a research fellowship to Stephan Lautenschlager from the German Volkswagen Foundation and grants from the National Science Foundation to Lawrence
Clues to How Plants Evolved to Cope With Cold
Dec. 22, 2013 — Researchers have found new clues to how plants evolved to withstand wintry weather. In a study to appear in the December 22 issue of the journal Nature, the team constructed an evolutionary tree of more than 32,000 species of flowering plants — the largest time-scaled evolutionary tree to date. By combining their tree with freezing exposure records and leaf and stem data for thousands of species, the researchers were able to reconstruct how plants evolved to cope with cold as they spread across the globe. The results suggest that many plants acquired characteristics that helped them thrive in colder climates — such as dying back to the roots in winter — long before they first encountered freezing.
Fossil evidence and reconstructions of past climatic conditions suggest that early flowering plants lived in warm tropical environments, explained co-author Jeremy Beaulieu at the National Institute for Mathematical & Biological Synthesis (NIMBioS) at the University of Tennessee.
As plants spread to higher latitudes and elevations, they evolved in ways that helped them deal with cold conditions. Plants that live in the tundra, such as Arctic cinquefoil and three-toothed saxifrage, can withstand winter temperatures below minus 15 degrees Celsius.
Unlike animals, most plants can’t move to escape the cold or generate heat to keep them warm. It’s not so much the cold but the ice that poses problems for plants. For instance, freezing and thawing cause air bubbles to form in the plant’s internal water transport system.
“Think about the air bubbles you see suspended in the ice cubes,” said co-author Amy Zanne of the George Washington University. “If enough of these air bubbles come together as water thaws they can block the flow of water from the roots to the leaves and kill the plant.”
The researchers identified three traits that help plants get around these problems.
Some plants, such as hickories and oaks, avoid freezing damage by dropping their leaves before the winter chill sets in — effectively shutting off the flow of water between roots and leaves — and growing new leaves and water transport cells when warmer weather returns.
Other plants, such as birches and poplars, also protect themselves by having narrower water transport cells, which makes the parts of the plant that deliver water less susceptible to blockage during freezing and thawing.
Still others die back to the ground in winter and re-sprout from their roots, or start growing as new plants from seeds when conditions are right.
To compile the plant trait data for their study, the researchers spent hundreds of hours scouring and merging multiple large plant databases containing tens of thousands of species, largely with the support of the National Evolutionary Synthesis Center in North Carolina and Macquarie University in Australia.
When they mapped their collected leaf and stem data onto their evolutionary tree for flowering plants, they found that many plants were well equipped for icy climates even before cold conditions hit.
Plants that die back to the ground in winter, for example, acquired the ability to die and come back when conditions improve long before they first experienced freezing. Similarly, species with narrow water transport cells acquired a finer circulatory system well before they confronted cold climates.
“This suggests that some other environmental pressure — possibly drought — caused these plants to evolve this way, and it happened to work really well for freezing tolerance too,” said Zanne.
The only exceptions were plants that shed and replace their leaves seasonally — these plant groups didn’t gain the ability to drop their leaves during winter until after they encountered freezing, Beaulieu added.
As a next step, the researchers plan to use their evolutionary tree to find out how plants evolved to withstand other environmental stresses in addition to freezing, such as drought and heat.
High Diversity of Flying Reptiles in England 110 Million Years Ago
June 12, 2013 — Brazilian paleontologists Taissa Rodrigues, of the Federal University of Espirito Santo, and Alexander W. A. Kellner, of the National Museum of the Federal University of Rio de Janeiro, have just presented the most extensive review yet available of toothed pterosaurs from the Cretaceous of England. The study features detailed taxonomic information, diagnoses and photographs of 30 species and was published in the open access journal ZooKeys.
14
Pterosaurs from the Cretaceous of England were first described by British naturalists Richard Owen and Harry Seeley in the 19th century, when little was known about the diversity of the group, resulting in the description of dozens of species, all based on very fragmentary remains, represented mostly by the tips of the snouts of these animals. However, more recent findings of pterosaur fossils have challenged views on their diversity.
Results show that these pterosaurs had a remarkable diversity in their appearances. Some species had head crests of different sizes and shapes, while others had none. Most had large teeth at the tip of their snouts and were fish eaters, but others had smaller teeth, suggesting different feeding preferences. The paleontologists were able to identify fourteen different species, belonging to at least five different genera, showing a greater diversity than previously thought.
Most of these fossils were found in a deposit known as the Cambridge Greensand, located in the eastern part of the country. This unit, one of the most important for the study of flying reptiles, records a past marine environment where the bones that were already fossilized and buried, were eroded, exposed to weathering, and then buried again. Cycles of erosion and burial must have taken place during several years. Due to this peculiarity, the pterosaur assemblage from this deposit probably presents temporal mixing of faunas, thus explaining the high diversity found.
Another find was that these English flying reptiles turned out to be closely related to species unearthed in northeastern Brazil and eastern China. According to Dr. Rodrigues, ‘This is very interesting, especially because the continents had already drifted apart. If these animals were migratory, we would expect to find the same species in all these deposits.’ Instead, the scientists have discovered that England, Brazil and China all had their own species and genera.
Analysis of fossils from other continents showed that this group of pterosaurs was already widespread in the whole planet 110 million years ago, and must have been important faunistic elements at this time of the Cretaceous period, being early bird competitors, before they went extinct a few million years later.
X-Rays Reveal New Picture of ‘Dinobird’ Plumage Patterns
June 11, 2013 — The first complete chemical analysis of feathers from Archaeopteryx, a famous fossil linking dinosaurs and birds, reveals that the feathers of this early bird were patterned – light in colour, with a dark edge and tip to the feather - rather than all black, as previously thought.
31
The findings came from X-ray experiments undertaken by a team from the University of Manchester, working with colleagues at the US Department of Energy’s (DOE) SLAC National Accelerator Laboratory. The scientists were able to find chemical traces of the original ‘dinobird’ and dilute traces of plumage pigments in the 150 million-year-old fossil.
“This is a big leap forward in our understanding of the evolution of plumage and also the preservation of feathers,” said Dr Phil Manning, a palaeontologist at The University of Manchester and lead author of the report in the June 13 issue of the Journal of Analytical Atomic Spectrometry (Royal Society of Chemistry).
Only 11 specimens of Archaeopteryx have been found, the first one consisting of a single feather. Until a few years ago, researchers thought minerals would have replaced all the bones and tissues of the original animal during fossilisation, leaving no chemical traces behind, but two recently developed methods have turned up more information about the dinobird and its plumage.
The first is the discovery of melanosomes – microscopic ‘biological paint pot’ structures in which pigment was once made, but are still visible in some rare fossil feathers. A team led by researchers at Brown University announced last year that an analysis of melanosomes in the single Archaeopteryx feather indicated it was black. They identified the feather as a covert – a type of feather that covers the primary and secondary wing feathers – and said its heavy pigmentation may have strengthened it against the wear and tear of flight, as it does in modern birds.
However, that study examined melanosomes from just a few locations in the fossilised feather, explained SLAC’s Dr Uwe Bergmann: “It’s actually quite a beautiful paper,” he said, “but they took just tiny samples of the feather, not the whole thing.”
The second is a method that Drs Bergmann, Manning and Roy Wogelius have developed for rapidly scanning entire fossils and analysing their chemistry with an X-ray beam at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) in the USA.
Over the past three years, the team used this method to discover chemical traces locked in the dinobird’s bones, feathers and in the surrounding rock, as well as pigments from the fossilised feathers of two specimens of another species of early bird. This allowed the team to recreate the plumage pattern of an extinct bird for the very first time.
In the latest study, the team scanned the entire fossil of the first Archaeopteryx feather with the SSRL X-ray beam. They found trace-metals that have been shown to be associated with pigment and organic sulphur compounds that could only have come from the animal’s original feathers.
“The fact that these compounds have been preserved in-place for 150 million years is extraordinary,” said Dr Manning said. “Together, these chemical traces show that the feather was light in colour with areas of darker pigment along one edge and on the tip.
“Scans of a second fossilised Archaeopteryx, known as the Berlin counterpart, also show that the trace-metal inventory supported the same plumage pigmentation pattern.”
Co-author Dr Roy Wogelius, also based in Manchester’s School of Earth, Atmospheric and Environmental Sciences, said: “This work refines our understanding of pigment patterning in perhaps the most important known fossil. Our technique shows that complex patterns were present even at the very earliest steps in the evolution of birds.”
The team’s results show that the chemical analysis provided by synchrotron X-ray sources, such as SSRL, is crucial when studying the fossil remains of such pivotal species. The plumage patterns can begin to help scientists review their possible role in the courtship, reproduction and evolution of birds and possibly shed new light on their health, eating habits and environment.
Dr Manning added: “It is remarkable that x-rays brighter than a million suns can shed new light on our understanding of the processes that have locked elements in place for such vast periods of time. Ultimately, this research might help inform scientists on the mechanisms acting during long-term burial, from animal remains to hazardous waste. The fossil record has potential to provide the experimental hindsight required in such studies.”
The research team included scientists from The University of Manchester (UK); SLAC (USA); the Black Hills Institute of Geological Research in South Dakota (USA); and the Museum für Naturkunde in Berlin (Germany), which provided the stunning Archaeopteryx fossils for analysis.
Fossil Saved from Mule Track Revolutionizes Understanding of Ancient Dolphin-Like Marine Reptile
May 14, 2013 — An international team of scientists have revealed a new species of ichthyosaur (a dolphin-like marine reptile from the age of dinosaurs) from Iraq, which revolutionises our understanding of the evolution and extinction of these ancient marine reptiles.
The results, produced by a collaboration of researchers from universities and museums in Belgium and the UK and published today (May 15) in Biology Letters, contradict previous theories that suggest the ichthyosaurs of the Cretaceous period (the span of time between 145 and 66 million years ago) were the last survivors of a group on the decline.
Ichthyosaurs are marine reptiles known from hundreds of fossils from the time of the dinosaurs. “They ranged in size from less than one to over 20 metres in length. All gave birth to live young at sea, and some were fast-swimming, deep-diving animals with enormous eyeballs and a so-called warm-blooded physiology,” says lead author Dr Valentin Fischer of the University of Liege in Belgium.
Until recently, it was thought that ichthyosaurs declined gradually in diversity through multiple extinction events during the Jurassic period. These successive events were thought to have killed off all ichthyosaurs except those strongly adapted for fast-swimming life in the open ocean. Due to this pattern, it has been assumed that ichthyosaurs were constantly and rapidly evolving to be ever-faster open-water swimmers; seemingly, there was no ‘stasis’ in their long evolutionary history.
However, an entirely new ichthyosaur from the Kurdistan region of Iraq substantially alters this view of the group. The specimen concerned was found during the 1950s by British petroleum geologists. “The fossil — a well-preserved partial skeleton that consists of much of the front half of the animal — wasn’t exactly being treated with the respect it deserves. Preserved within a large, flat slab of rock, it was being used as a stepping stone on a mule track,” says co-author Darren Naish of the University of Southampton. “Luckily, the geologists realized its potential importance and took it back to the UK, where it remains today,” adds Dr Naish, who is based at the National Oceanography Centre, Southampton.
Study of the specimen began during the 1970s with ichthyosaur expert Robert Appleby, then of University College, Cardiff. “Robert Appleby recognised that the specimen was significant, but unfortunately died before resolving the precise age of the fossil, which he realised was critical,” says Jeff Liston of National Museums Scotland and manager of the research project. “So continuation of the study fell to a new generation of researchers.”
In the new study (which properly includes Appleby as an author), researchers name it Malawania anachronus, which means ‘out of time swimmer’. Despite being Cretaceous in age, Malawania represents the last-known member of a kind of ichthyosaur long believed to have gone extinct during the Early Jurassic, more than 66 million years earlier. Remarkably, this kind of archaic ichthyosaur appears characterised by an evolutionary stasis: they seem not to have changed much between the Early Jurassic and the Cretaceous, a very rare feat in the evolution of marine reptiles.
“Malawania’s discovery is similar to that of the coelacanth in the 1930s: it represents an animal that seems ‘out of time’ for its age. This ‘living fossil’ of its time demonstrates the existence of a lineage that we had never even imagined. Maybe the existence of such Jurassic-style ichthyosaurs in the Cretaceous has been missed because they always lived in the Middle-East, a region that has previously yielded only a single, very fragmentary ichthyosaur fossil,” adds Dr Fischer.
Thanks to both their study of microscopic spores and pollen preserved on the same slab as Malawania, and to their several analyses of the ichthyosaur family tree, Fischer and his colleagues retraced the evolutionary history of Cretaceous ichthyosaurs. In fact, the team was able to show that numerous ichthyosaur groups that appeared during the Triassic and Jurassic ichthyosaur survived into the Cretaceous. It means that the supposed end of Jurassic extinction event did not ever occur for ichthyosaurs, a fact that makes their fossil record quite different from that of other marine reptile groups.
When viewed together with the discovery of another ichthyosaur by the same team in 2012 and named Acamptonectes densus, the discovery of Malawania constitutes a ‘revolution’ in how we imagine ichthyosaur evolution and extinction. It now seems that ichthyosaurs were still important and diverse during the early part of the Cretaceous. The final extinction of the ichthyosaurs — an event that occurred about 95 million years ago (long before the major meteorite-driven extinction event that ended the Cretaceous) — is now even more confusing than previously assumed.