Remains of Extinct Giant Camel Discovered in High Arctic

Mar. 5, 2013 — A research team led by the Canadian Museum of Nature has identified the first evidence for an extinct giant camel in Canada’s High Arctic. The discovery is based on 30 fossil fragments of a leg bone found on Ellesmere Island, Nunavut and represents the most northerly record for early camels, whose ancestors are known to have originated in North America some 45 million years ago.
The fossils were collected over three summer field seasons (2006, 2008 and 2010) and are about three-and-a-half million years old, dating from the mid-Pliocene Epoch. Other fossil finds at the site suggest this High Arctic camel lived in a boreal-type forest environment, during a global warm phase on the planet.

The research by Dr. Natalia Rybczynski and co-authors including Dr. John Gosse at Dalhousie University, Halifax and Dr. Mike Buckley at the University of Manchester, England is described in the March 5, 2013 edition of the online journal Nature Communications.

“This is an important discovery because it provides the first evidence of camels living in the High Arctic region,” explains Rybczynski, a vertebrate paleontologist with the Canadian Museum of Nature, who has led numerous field expeditions in Canada’s Arctic. “It extends the previous range of camels in North America northward by about 1,200 km, and suggests that the lineage that gave rise to modern camels may been originally adapted to living in an Arctic forest environment.”

The camel bones were collected from a steep slope at the Fyles Leaf Bed site, a sandy deposit near Strathcona Fiord on Ellesmere Island. Fossils of leaves, wood and other plant material have been found at this site, but the camel is the first mammal recovered. A nearby fossil-rich locality at Strathcona Fiord, known as the Beaver Pond site, has previously yielded fossils of other mammals from the same time period, including a badger, deerlet, beaver and three-toed horse.

Determining that the bones were from a camel was a challenge. “The first time I picked up a piece, I thought that it might be wood. It was only back at the field camp that I was able to ascertain it was not only bone, but also from a fossil mammal larger than anything we had seen so far from the deposits,” explains Rybczynski, relating the moment that she and her team had discovered something unusual.

Some important physical characteristics suggested the fossil fragments were part of a large tibia, the main lower-leg bone in mammals, and that they belonged to the group of cloven-hoofed animals known as arteriodactyls, which includes cows, pigs and camels. Digital files of each of the 30 bone fragments were produced using a 3D laser scanner, allowing for the pieces to be assembled and aligned. The size of the reconstituted leg bone suggested it was from a very large mammal. At the time in North America, the largest arteriodactyls were camels.

Full confirmation that the bones belonged to a camel came from a new technique called “collagen fingerprinting” pioneered by Dr. Mike Buckley at the University of Manchester in England. Profiles produced by this technique can be used to distinguish between groups of mammals.

Minute amounts of collagen, the dominant protein found in bone, were extracted from the fossils. Using chemical markers for the peptides that make up the collagen, a collagen profile for the fossil bones was developed. This profile was compared with those of 37 modern mammal species, as well as that of a fossil camel found in the Yukon, which is also in the Canadian Museum of Nature’s collections.

The collagen profile for the High Arctic camel most closely matched those of modern camels, specifically dromedaries (camels with one hump) as well as the Yukon giant camel, which is thought to be Paracamelus, the ancestor of modern camels. The collagen information, combined with the anatomical data, allowed Rybczynski and her colleagues to conclude that the Ellesmere bones belong to a camel, and is likely the same lineage as Paracamelus.

“We now have a new fossil record to better understand camel evolution, since our research shows that the Paracamelus lineage inhabitated northern North America for millions of years, and the simplest explanation for this pattern would be that Paracamelus originated there,” explains Rybczynski. “So perhaps some specializations seen in modern camels, such as their wide flat feet, large eyes and humps for fat may be adaptations derived from living in a polar environment.”

The scientific paper also reports for the first time an accurate age of both the Fyles Leaf Bed site and the Beaver Pond site — at least 3.4 million years old. This was determined by Dr. John Gosse at Dalhousie University using a sophisticated technique that involves dating the sands found associated with the bone. The date is significant because it corresponds to a time period when Earth was 2ºC à 3ºC warmer than today, and the Arctic was 14ºC à 22ºC warmer. The bones of the High Arctic camel are housed in the Canadian Museum of Nature’s research and collections facility in Gatineau, Quebec on behalf of the Government of Nunavut.

New Fossils of Crocodilian, Hippo-Like Species from Panama

Mar. 5, 2013 — University of Florida paleontologists have discovered remarkably well-preserved fossils of two crocodilians and a mammal previously unknown to science during recent Panama Canal excavations that began in 2009.

The two new ancient extinct alligator-like animals and an extinct hippo-like species inhabited Central America during the Miocene about 20 million years ago. The research expands the range of ancient animals in the subtropics — some of the most diverse areas today about which little is known historically because lush vegetation prevents paleontological excavations — and may be used to better understand how climate change affects species dispersal today. The two studies appear online today in the same issue of the Journal of Vertebrate Paleontology.

The fossils shed new light on scientists’ understanding of species distribution because they represent a time before the formation of the Isthmus of Panama, when the continents of North and South America were separated by oceanic waters.

“In part we are trying to understand how ecosystems have responded to animals moving long distances and across geographic barriers in the past,” said study co-author Jonathan Bloch, associate curator of vertebrate paleontology at the Florida Museum of Natural History on the UF campus. “It’s a testing ground for things like invasive species — if you have things that migrated from one place into another in the past, then potentially you have the ability to look at what impact a new species might have on an ecosystem in the future.”

The research was funded by the National Science Foundation Panama Canal Partnerships in International Research and Education project, which supports paleontological excavation of the canal during construction expected to continue through 2014.

“We’re very fortunate we could get the funding for PIRE to take advantage of this opportunity — we’re getting to sample these areas that are completely unsampled,” said Alex Hastings, lead author of the crocodilian study and a visiting instructor at Georgia Southern University who conducted the research for the project as a UF graduate student.

Researchers analyzed all known crocodilian fossils from the Panama Canal, including the oldest records of Central American caimans, which are cousins of alligators. The more primitive species, named Culebrasuchus mesoamericanus, may represent an evolutionary transition between caimans and alligators, Hastings said.

“You mix an alligator and one of the more primitive caimans and you end up with this caiman that has a much flatter snout, making it more like an alligator,” Hastings said. “Before this, there were no fossil crocodilian skulls known from Central America.”

Christopher Brochu, an assistant professor of vertebrate paleontology in the department of geoscience at the University of Iowa, said “the caiman fossil record is tantalizing,” and the new data shows there is still a long way to go before researchers understand the group.

“The fossils that are in this paper are from a later time period, but some of them appear to be earlier-branching groups, which could be very important,” said Brochu, who was not involved with the study. “The problem is, because we know so little about early caiman history, it’s very difficult to tell where these later forms actually go on the family tree.”

The new mammal species researchers described is an anthracothere, Arretotherium meridionale, an even-toed hooved mammal previously thought to be related to living hippos and intensively studied on the basis of its hypothetical relationship with whales. About the size of a cow, the mammal would have lived in a semi-aquatic environment in Central America, said lead author and UF graduate student Aldo Rincon.

“With the evolution of new terrestrial corridors like this peninsula connecting North America with Central America, this is one of the most amazing examples of the different kind of paths land animals can take,” Rincon said. “Somehow this anthracothere is similar to anthracotheres from other continents like northern Africa and northeastern Asia.”

Researchers also name a second crocodilian species, Centenariosuchus gilmorei, after Charles Gilmore, who first reported evidence of crocodilian fossils collected during construction of the canal 100 years ago. The genus is named in honor of the canal’s centennial in 2014.

Researchers will continue excavating deposits from the Panama Canal during construction to widen and straighten the channel and build new locks. The project is funded by a $3.8 million NSF grant to develop partnerships between the U.S. and Panama and engage the next generation of scientists in paleontological and geological discoveries along the canal.

Study co-authors include Bruce MacFadden of UF and Carlos Jaramillo of the Smithsonian Tropical Research Institute.

Feeding Limbs and Nervous System of One of Earth’s Earliest Animals Discovered

Feb. 27, 2013 — An extraordinary find allowing scientists to see through the head of the ‘fuxianhuiid’ arthropod has revealed one of the earliest evolutionary examples of limbs used for feeding, along with the oldest nervous system to stretch beyond the head in fossil record.

Until now, all fossils found of this extremely early soft-bodied animal featured heads covered by a wide shell or ‘carapace’, obscuring underlying contents from detailed study.

But a new fossil-rich site in South China has been found to contain arthropod examples where the carapace has literally been ‘flipped’ over before fossilisation — allowing scientists to examine the fuxianhuiid head to an unprecedented extent.

The study, published today in Nature, highlights the discovery of previously controversial limbs under the head, used to shovel sediment into the mouth as the fuxianhuiid crawled across the seabed, millions of years before creatures emerged from the oceans.

Scientists say that this could be the earliest and simplest example of manipulative limbs used for feeding purposes, hinting at the adaptive ability that made arthropods so successful and abundant — evolving into the insects, spiders and crustaceans we know today.

Using a feeding technique scientist’s call ‘detritus sweep-feeding’, fuxianhuiids developed the limbs to push seafloor sediment into the mouth in order to filter it for organic matter — such as traces of decomposed seaweed — which constituted the creatures’ food.

Fossils also revealed the oldest nervous system on record that is ‘post-cephalic’ — or beyond the head — consisting of only a single stark string in what was a very basic form of early life compared to today.

“Since biologists rely heavily on organisation of head appendages to classify arthropod groups, such as insects and spiders, our study provides a crucial reference point for reconstructing the evolutionary history and relationships of the most diverse and abundant animals on Earth,” said Javier Ortega-Hernández, from Cambridge’s Department of Earth Sciences, who produced the research with Dr Nicholas Butterfield and colleagues from Yunnan University in Kunming, South China. “This is as early as we can currently see into arthropod limb development.”

Fuxianhuiids existed around 520 million years ago, roughly 50 million years before primordial land animals crawled from the sea, and would have been one of the first examples of complex animal life — likely to have evolved from creatures resembling worms with legs. Arthropods were the first jointed animals, enabling them to crawl.

Fuxianhuiid arthropods would have spent most of their time grazing on the sea floor, using these newly discovered limbs to plow sediment into their mouths. They could probably also use their bodies to swim for short distances, like tadpole shrimps.

The fossils date from the early part of the event known as the ‘Cambrian explosion’, when life on Earth went from multi-cellular organisms we know very little about to a relatively sudden and wide spread explosion of diverse marine animals — the first recognisable evolutionary step for the animal kingdom we know today.

“These fossils are our best window to see the most primitive state of animals as we know them — including us,” said Ortega-Hernández. “Before that there is no clear indication in the fossil record of whether something was an animal or a plant — but we are still filling in the details, of which this is an important one.”

While still a mystery, theories about the cause of the ‘Cambrian Explosion’ include possible correlations with oxygen rises, spikes in oceanic nutrient concentration, and genetic complexity reaching critical mass.

But the new site in South China where these fossils were found could prove to be key in uncovering ever more information about this pivotal period in the history of life on Earth. The Xiaoshiba ‘biota’ — that is the collection of all organisms preserved in the new locality — in China’s Yunnan Province is similar to the world-famous Chengjiang biota, which provided many of the best arthropod fossil records to date.

“The Xiaoshiba biota is amazingly rich in such extraordinary fossils of early organisms,” said Ortega-Hernández. “Over 50 specimens of fuxianhuiids have been found in just over a year, whereas previous areas considered fossil rich such as Chengjiang it took years — even decades — to build up such a collection.”

“So much material is so well preserved. There’s massive potential for Xiaoshiba to become a huge deal for new discoveries in early animal evolution.”

Ancient Fossilized Sea Creatures Yield Oldest Biomolecules Isolated Directly from a Fossil

Feb. 18, 2013 — Though scientists have long believed that complex organic molecules couldn’t survive fossilization, some 350-million-year-old remains of aquatic sea creatures uncovered in Ohio, Indiana, and Iowa have challenged that assumption.

The spindly animals with feathery arms — called crinoids, but better known today by the plant-like name “sea lily” — appear to have been buried alive in storms during the Carboniferous Period, when North America was covered with vast inland seas. Buried quickly and isolated from the water above by layers of fine-grained sediment, their porous skeletons gradually filled with minerals, but some of the pores containing organic molecules were sealed intact.

That’s the conclusion of Ohio State University geologists, who extracted the molecules directly from individual crinoid fossils in the laboratory, and determined that different species of crinoid contained different molecules. The results will appear in the March issue of the journal Geology.

William Ausich, professor in the School of Earth Sciences at Ohio State and co-author of the paper, explained why the organic molecules are special.

“There are lots of fragmented biological molecules — we call them biomarkers — scattered in the rock everywhere. They’re the remains of ancient plant and animal life, all broken up and mixed together,” he said. “But this is the oldest example where anyone has found biomarkers inside a particular complete fossil. We can say with confidence that these organic molecules came from the individual animals whose remains we tested.”

The molecules appear to be aromatic compounds called quinones, which are found in modern crinoids and other animals. Quinones sometimes function as pigments or as toxins to discourage predators.

Lead author Christina O’Malley, who completed this work to earn her doctoral degree, first began the study when she noticed something strange about some crinoids that had perished side by side and become preserved in the same piece of rock: the different species were preserved in different colors.

In one rock sample used in the study, one crinoid species appears a light bluish-gray, while another appears dark gray and yet another more of a creamy white. All stand out from the color of the rock they were buried in. The researchers have since found similar fossil deposits from around the Midwest.

“People noticed the color differences 100 years ago, but no one ever investigated it,” O’Malley said. “The analytical tools were not available to do this kind of work as they are today.”

O’Malley isolated the molecules by grinding up small bits of fossil and dissolving them into a solution. Then she injected a tiny sample of the solution into a machine called a gas chromatograph mass spectrometer. The machine vaporized the solution so that a magnet could separate individual molecules based on electric charge and mass. Computer software identified the molecules as similar to quinones.

Then, with study co-author and Ohio State geochemist Yu-Ping Chin, she compared the organic molecules from the fossils with the molecules that are common in living crinoids today. Just as the researchers suspected, quinone-like molecules occur in both living crinoids and their fossilized ancestors.

Though different colored fossils contained different quinones, the researchers cautioned that there’s no way to tell whether the quinones functioned as pigments, or that the preserved colors as they appear today were similar to the colors that the crinoids had in life.

Part of why the crinoids were so well preserved has to do with the structure of their skeletons, the researchers said. Like sand dollars, crinoids have skin on top of a hard calcite shell. In the case of crinoids, their long bodies are made up of thousands of stacked calcite rings, and each ring is a single large calcite crystal that contains pores filled with living tissue. When a crinoid dies, the tissue will start to decay, but calcite will precipitate into the pores, and calcite is stable over geologic time. Thus, organic matter may become sealed whole within the rock.

“We think that rock fills in the skeleton according to how the crystals are oriented. So it’s possible to find large crystals filled in such a way that they have organic matter still trapped inside,” Ausich said.

The location of the fossils was also key to their preservation. In the flat American Midwest, the rocks weren’t pushed up into mountain chains or heated by volcanism, so from the Ohio State geologists’ perspective, they are pristine.

Their next challenge is to identify the exact type of quinone molecules they found, and determine how much information about individual species can be gleaned from them.

“These molecules are not DNA, and they’ll never be as good as DNA as a means to define evolutionary relationships, but they could still be useful,” Ausich said. “We suspect that there’s some kind of biological signal there — we just need to figure out how specific it is before we can use it as a means to track different species.”

This research was sponsored by the National Science Foundation and the Geological Society of America.

Jurassic Records Warn of Risk to Marine Life from Global Warming

Feb. 19, 2013 — The risk posed by global warming and rising ocean temperatures to the future health of the world’s marine ecosystem has been highlighted by scientists studying fossil records.

Researchers at Plymouth University believe that findings from fieldwork along the North Yorkshire coast reveal strong parallels between the Early Jurassic era of 180 million years ago and current climate predictions over the next century.

Through geology and palaeontology, they’ve shown how higher temperatures and lower oxygen levels caused drastic changes to marine communities, and that while the Jurassic seas eventually recovered from the effects of global warming, the marine ecosystems that returned were noticeably different from before.

The results of the Natural Environment Research Council-funded project are revealed for the first time in this month’s PLOS ONE scientific journal.

Professor Richard Twitchett, from the University’s School of Geography, Earth and Environmental Sciences, and a member of its Marine Institute, said: “Our study of fossil marine ecosystems shows that if global warming is severe enough and lasts long enough it may cause the extinction of marine life, which irreversibly changes the composition of marine ecosystems.”

Professor Twitchett, with Plymouth colleagues Dr Silvia Danise and Dr Marie-Emilie Clemence, undertook fieldwork between Whitby and Staithes, studying the different sedimentary rocks and the marine fossils they contained. This provided information about the environmental conditions on the sea floor at the time the rocks were laid down.

The researchers, working with Dr Crispin Little from the University of Leeds, were then able to correlate the ecological data with published data on changes in temperature, sea level and oxygen concentrations.

Dr Danise said: “Back in the laboratory, we broke down the samples and identified all of the fossils, recording their relative abundance much like a marine biologist would do when sampling a modern environment. Then we ran the ecological analyses to determine how the marine seafloor community changed through time.”

The team found a ‘dead zone’ recorded in the rock, which showed virtually no signs of life and contained no fossils. This was followed by evidence of a return to life, but with new species recorded.

Professor Twitchett added: “The results show in unprecedented detail how the fossil Jurassic communities changed dramatically in response to a rise in sea level and temperature and a decline in oxygen levels.

“Patterns of change suffered by these Jurassic ecosystems closely mirror the changes that happen when modern marine communities are exposed to declining levels of oxygen. Similar ecological stages can be recognised in the fossil and modern communities despite differences in the species present and the scale of the studies.”

The NERC project – ‘The evolution of modern marine ecosystems: environmental controls on their structure and function’ – runs until March 2015, and is one of four funded under their Coevolution of Life and the Planet research programme.

Ice Age Extinction Shaped Australian Plant Diversity

Feb. 12, 2013 — Researchers have shown that part of Australia’s rich plant diversity was wiped out by the ice ages, demonstrating that extinction, probably more than evolution, influences biodiversity.

The research led by the University of Melbourne and University of Tasmania has shown that plant diversity in South East Australia was as rich as some of the most diverse places in the world, and that most of these species went extinct during the ice ages, probably about one million years ago.

The team’s work was recently published in the Proceedings of the National Academy of Sciences.

Dr Sniderman of the University of Melbourne’s School of Earth Sciences said the findings show extinction is just as important to diversity of organisms as evolution.

“Traditionally scientists believed some places have more species than others because species evolved more rapidly in these places. We have overthrown this theory, which emphasizes evolution, by showing that extinction may be more important, ” he said.

The study compared two regions of Southern Australia and South Africa.

“South-western Australia has a huge diversity of tough-leaved shrubs and trees such as eucalypts, Banksia, Grevilleas and Acacias, making it one of the most biodiverse places on Earth,” Dr Sniderman said.

“The southern tip of South Africa is even richer, with astonishing numbers of similar kinds of plants like proteas and ericas.”

Scientists have long maintained that this diversity is somehow related to the poor soils and dry summers of these places.

For the study researchers analysed plant fossils that accumulated in an ancient lake in South Eastern Australia. They found the region had at least as many tough-leaved plants 1.5 million years ago as Western Australia and South Africa do today.

The results were entirely unexpected.

“As Australia dried out over the past several million years, rainforest plants largely disappeared from most of the continent,” said Dr Sniderman

“It has been thought that this drying trend allowed Australia’s characteristic tough-leaved plants to expand and became more diverse. We have shown that the climate variability of the ice ages not only drove rainforest plants to extinction but also a remarkable number of tough-leaved, shrubby plants,” he said. Dr Greg Jordan of the School of Plant Sciences at the University of Tasmanian said not only has the study overturned current thought on the role of extinction in plant diversity, it has implications for understanding how Australian plant diversity will deal with current and future climate change.

“The species that went extinct in SE Australia during the ice ages were likely to be the ones most sensitive to rapid climate change, meaning that the species that now grow in eastern Australia may be more capable of tolerating rapid changes than predicted by current science,” he said.

“However, the species in hotspots of diversity like Western Australia may be much more sensitive to future climate change, because they have been protected from past climate changes.”

The study was done in collaboration with the Nelson Mandela Metropolitan University in South Africa.

Ancient Insects Shed Light On Biodiversity

Simon Fraser University evolutionary biologists Bruce Archibald and Rolf Mathewes, and Brandon University biologist David Greenwood, have discovered that modern tropical mountains’ diversity patterns extended up into Canada about 50 million years ago.
Their findings confirm an influential theory about change in modern species diversity across mountains, and provide evidence that global biodiversity was greater in ancient times than now. The scientific journal Palaeogeography, Palaeoclimatology, Palaeoecology has published their research.

About 45 years ago, an evolutionary biologist at the University of Pennsylvania theorized that change in species from site to site across mountain ranges in the tropics should be greater than in temperate latitudes.

Daniel Janzen reasoned that the great difference between summer and winter in temperate latitudes (high seasonality) offers a wide window to migrate across mountainous regions. The small difference in the tropics (low seasonality) allows a very narrow opportunity, annually. Consequently, communities across tropical mountains should have fewer of the same species. Many studies examining modern communities support this theory.

Archibald, Mathewes and Greenwood realized that fossil beds across a thousand kilometres of the ancient mountains of British Columbia and Washington provided a unique lens through which to deepen evaluation of this theory.

Fifty million years ago, when these fossil beds were laid down, the world had low seasonality outside of the tropics, right to the poles. Because of this, if Janzen’s theory is right, the pattern of biodiversity that he described in modern tropical mountains should have extended well into higher latitudes.

“We found that insect species changed greatly across British Columbia’s and Washington State’s ancient mountain ranges, like in the modern tropics,” Archibald says, “exactly as Janzen’s seasonality hypothesis predicted.

This implies that it’s the particular seasonality now found in the modern tropics, not where that climate is situated globally, that affects this biodiversity pattern.” He adds: “Sometimes it helps to look to the ancient past to better understand how things work today.”

The findings also bolster the idea that ancient Earth was a much more diverse world than now with many more species.

Brain of Ampelosaur from Cuenca (Spain) Revealed

Jan. 23, 2013 — Scientists have made a 3D reconstruction of the remains of ampelosaur, found in 2007 in the site of Lo Hueco (Cuenca). The fossils are about 70 million years old (Late Cretaceous).

Up to now, only one species of the genus was known, Ampelosaurus atacis, which was discovered in France. The differences between the Spanish and the French fossils do not rule out that they could represent distinct species.

The researcher from the National Museum of Natural Sciences (CSIC) Fabien Knoll, who has conducted the investigation, considers that “more fossils are necessary to establish that we are dealing with a new species.” For this reason, the team has identified the specimen as Ampelosaurus sp., which leaves open its specific identity.

Little evolved brain

The ampelosaur pertains to the sauropod group, large-sized dinosaurs that settled widely during the Mesozoic Era (which began 253 million years ago and ended 66 million years ago). More precisely, it is a titanosaur, a group of plant eating animals that were dominant during the last half of the Cretaceous (last period of the Mesozoic). The first sauropods appeared about 160 million years earlier than the ampelosaur.

However, despite being the product of a long evolution, the brain of the ampelosaur does not show any notable development. Knoll explains: “This saurian may have reached 15 m in length; nonetheless its brain was not in excess of 8 cm.” According to the CSIC researcher: “Increase in brain size was not favored in the course of sauropod evolution.”

Another of the characteristics yielded by the reconstruction of the Cuenca ampelosaur brain is the small size of the inner ear. According to Knoll: “This may suggest that the ampelosaur would not have been adapted to quickly move either its eyes or its head and neck.”

In January of 2012, Knoll conducted the investigation that led to the reconstruction of another sauropod, Spinophorosaurus nigeriensis. The simulation in 3D of its brain revealed that that species, in contrast to what the study of the ampelosaur braincase demonstrated, presented a fairly well-developed inner ear.

According to the one of the researchers, “It is quite enigmatic that sauropods show such a diverse inner ear morphology whereas they have a very homogenous body shape; more investigation is definitely required.”

A Relative from the Tianyuan Cave: Humans Living 40,000 Years Ago Likely Related to Many Present-Day Asians and Native Americans

Jan. 21, 2013 — Ancient DNA has revealed that humans living some 40,000 years ago in the area near Beijing were likely related to many present-day Asians and Native Americans.
An international team of researchers including Svante Pääbo and Qiaomei Fu of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, sequenced nuclear and mitochondrial DNA that had been extracted from the leg of an early modern human from Tianyuan Cave near Beijing, China. Analyses of this individual’s DNA showed that the Tianyuan human shared a common origin with the ancestors of many present-day Asians and Native Americans. In addition, the researchers found that the proportion of Neanderthal and Denisovan-DNA in this early modern human is not higher than in people living in this region nowadays.

Humans with morphology similar to present-day humans appear in the fossil record across Eurasia between 40,000 and 50,000 years ago. The genetic relationships between these early modern humans and present-day human populations had not yet been established. Qiaomei Fu, Matthias Meyer and colleagues of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, extracted nuclear and mitochondrial DNA from a 40,000 year old leg bone found in 2003 at the Tianyuan Cave site located outside Beijing. For their study the researchers were using new techniques that can identify ancient genetic material from an archaeological find even when large quantities of DNA from soil bacteria are present.

The researchers then reconstructed a genetic profile of the leg’s owner. “This individual lived during an important evolutionary transition when early modern humans, who shared certain features with earlier forms such as Neanderthals, were replacing Neanderthals and Denisovans, who later became extinct,” says Svante Pääbo of the Max Planck Institute for Evolutionary Anthropology, who led the study.

The genetic profile reveals that this early modern human was related to the ancestors of many present-day Asians and Native Americans but had already diverged genetically from the ancestors of present-day Europeans. In addition, the Tianyuan individual did not carry a larger proportion of Neanderthal or Denisovan DNA than present-day people in the region. “More analyses of additional early modern humans across Eurasia will further refine our understanding of when and how modern humans spread across Europe and Asia,” says Svante Pääbo.

Parts of the work were carried out in a new laboratory jointly run by the Max Planck Society and the Chinese Academy of Sciences in Beijing.

Earliest Sea Cow Ancestors Originated in Africa, Lived in Fresh Water

Jan. 16, 2013 — A new fossil discovered in Tunisia represents the oldest known ancestor of modern-day sea cows, supporting the African origins of these marine mammals. The find is described in research published January 16 in the open access journal PLOS ONE by Julien Benoit and colleagues from the University of Science and Technology in Montpellier, France.

Some fossils of sea cow ancestors have been found in Jamaica, but the Tunisian fossil is more primitive and pre-dates these, revealing an older ancestor for sea cows that emerged at the same time as other modern mammals. Unlike whales and dolphins, the evolutionary origins of the sea cow family have been obscure.

They share an ancestor with elephants, and it is thought that their oldest relatives were terrestrial animals that gradually adapted to an aquatic life. The last common ancestor of the two species may have lived in freshwater swamps well before the time that the new species described in this study lived.

Though this specimen may not have been the common link between modern day sea cows and elephants, the authors’ analyses suggest that this new species lived in fresh water, not sea waters.