Revision to rules for color in dinosaurs suggests connection between color and physiology
New research that revises the rules allowing scientists to decipher color in dinosaurs may also provide a tool for understanding the evolutionary emergence of flight and changes in dinosaur physiology prior to its origin.
In a survey comparing the hair, skin, fuzz and feathers of living terrestrial vertebrates and fossil specimens, a research team from The University of Texas at Austin, the University of Akron, the China University of Geosciences and four other Chinese institutions found evidence for evolutionary shifts in the rules that govern the relationship between color and the shape of pigment-containing organelles known as melanosomes, as reported in the Feb. 13 edition of Nature.
At the same time, the team unexpectedly discovered that ancient maniraptoran dinosaurs, paravians, and living mammals and birds uniquely shared the evolutionary development of diverse melanosome shapes and sizes. (Diversity in the shape and size of melanosomes allows scientists to decipher color.) The evolution of diverse melanosomes in these organisms raises the possibility that melanosome shape and size could yield insights into dinosaur physiology.
Melanosomes have been at the center of recent research that has led scientists to suggest the colors of ancient fossil specimens covered in fuzz or feathers.
Melanosomes contain melanin, the most common light-absorbing pigment found in animals. Examining the shape of melanosomes from fossil specimens, scientists have recently suggested the color of several ancient species, including the fuzzy first-discovered feathered dinosaur Sinosauropteryx, and feathered species like Microraptor and Anchiornis.
According to the new research, color-decoding works well for some species, but the color of others may be trickier than thought to reconstruct.
Comparing melanosomes of 181 extant specimens, 13 fossil specimens and all previously published data on melanosome diversity, the researchers found that living turtles, lizards and crocodiles, which are ectothermic (commonly known as cold-blooded), show much less diversity in the shape of melanosomes than birds and mammals, which are endothermic (warm-blooded, with higher metabolic rates).
The limited diversity in melanosome shape among living ectotherms shows little correlation to color. The same holds true for fossil archosaur specimens with fuzzy coverings scientists have described as “protofeathers” or “pycnofibers.” In these specimens, melanosome shape is restricted to spherical forms like those in modern reptiles, throwing doubt on the ability to decipher the color of these specimens from fossil melanosomes.
In contrast, in the dinosaur lineage leading to birds, the researchers found an explosion in the diversity of melanosome shape and size that appears to correlate to an explosion of color within these groups. The shift in diversity took place abruptly, near the origin of pinnate feathers in maniraptoran dinosaurs.
“This points to a profound change at a pretty discrete point,” says author Julia Clarke of The University of Texas at Austin’s Jackson School of Geosciences. “We’re seeing an explosion of melanosome diversity right before the origin of flight associated with the origin of feathers.”
What surprised the researchers was a similarity in the pattern of melanosome diversity among ancient maniraptoran dinosaurs, paravians, and living mammals and birds.
“Only in living, warm-blooded vertebrates that independently evolved higher metabolic rates do we see the melanosome diversity we also see in feathered dinosaurs,” said co-author Matthew Shawkey of The University of Akron.
Many of the genes involved in the melanin color system are also involved in other core processes such as food intake, the stress axis, and reproductive behaviors. Because of this, note the researchers, it is possible that the evolution of diverse melanosome shapes is linked to larger changes in energetics and physiology.
Melanosome shape could end up offering a new tool for studying endothermy in fossil specimens, a notoriously challenging subject for paleontologists.
Because the explosion of diversity in melanosomes appears to have taken place right at the origin of pinnate feathers, the change may indicate that a key shift in dinosaurian physiology occurred prior to the origin of flight.
“We are far from understanding the exact nature of the shift that may have occurred,” says Clarke. “But if changes in genes involved in both coloration and other aspects of physiology explain the pattern we see, these precede flight and arise close to the origin of feathers.”
It is possible, notes Clarke, that a diversity in melanosome shape (and correlated color changes) resulted from an increased evolutionary role for signaling and sexual selection that had a carryover effect on physiology, or that a change in physiology closely preceded changes in color patterning. At this point, she stresses, both ideas are speculative.
“What is interesting is that trying to get at color in extinct animals may have just started to give us some insights into changes in the physiology of dinosaurs.”
Giant mass extinction quicker than previously thought: End-Permian extinction happened in 60,000 years
The largest mass extinction in the history of animal life occurred some 252 million years ago, wiping out more than 96 percent of marine species and 70 percent of life on land — including the largest insects known to have inhabited Earth. Multiple theories have aimed to explain the cause of what’s now known as the end-Permian extinction, including an asteroid impact, massive volcanic eruptions, or a cataclysmic cascade of environmental events. But pinpointing the cause of the extinction requires better measurements of how long the extinction period lasted.
Now researchers at MIT have determined that the end-Permian extinction occurred over 60,000 years, give or take 48,000 years — practically instantaneous, from a geologic perspective. The new timescale is based on more precise dating techniques, and indicates that the most severe extinction in history may have happened more than 10 times faster than scientists had previously thought.
“We’ve got the extinction nailed in absolute time and duration,” says Sam Bowring, the Robert R. Shrock Professor of Earth and Planetary Sciences at MIT. “How do you kill 96 percent of everything that lived in the oceans in tens of thousands of years? It could be that an exceptional extinction requires an exceptional explanation.”
In addition to establishing the extinction’s duration, Bowring, graduate student Seth Burgess, and a colleague from the Nanjing Institute of Geology and Paleontology also found that, 10,000 years before the die-off, the oceans experienced a pulse of light carbon, which likely reflects a massive addition of carbon dioxide to the atmosphere. This dramatic change may have led to widespread ocean acidification and increased sea temperatures by 10 degrees Celsius or more, killing the majority of sea life.
But what originally triggered the spike in carbon dioxide? The leading theory among geologists and paleontologists has to do with widespread, long-lasting volcanic eruptions from the Siberian Traps, a region of Russia whose steplike hills are a result of repeated eruptions of magma. To determine whether eruptions from the Siberian Traps triggered a massive increase in oceanic carbon dioxide, Burgess and Bowring are using similar dating techniques to establish a timescale for the Permian period’s volcanic eruptions that are estimated to have covered over five million cubic kilometers.
“It is clear that whatever triggered extinction must have acted very quickly,” says Burgess, the lead author of a paper that reports the results in this week’s Proceedings of the National Academy of Sciences, “fast enough to destabilize the biosphere before the majority of plant and animal life had time to adapt in an effort to survive.”
Pinning dates on an extinction
In 2006, Bowring and his students made a trip to Meishan, China, a region whose rock formations bear evidence of the end-Permian extinction; geochronologists and paleontologists have flocked to the area to look for clues in its layers of sedimentary rock. In particular, scientists have focused on a section of rock that is thought to delineate the end of the Permian, and the beginning of the Triassic, based on evidence such as the number of fossils found in surrounding rock layers.
Bowring sampled rocks from this area, as well as from nearby alternating layers of volcanic ash beds and fossil-bearing rocks. After analyzing the rocks in the lab, his team reported in 2011 that the end-Permian likely lasted less than 200,000 years. However, this timeframe still wasn’t precise enough to draw any conclusions about what caused the extinction.
Now, the team has revised its estimates using more accurate dating techniques based on a better understanding of uncertainties in timescale measurements.
With this knowledge, Bowring and his colleagues reanalyzed rock samples collected from five volcanic ash beds at the Permian-Triassic boundary. The researchers pulverized rocks and separated out tiny zircon crystals containing a mix of uranium and lead. They then isolated uranium from lead, and measured the ratios of both isotopes to determine the age of each rock sample.
From their measurements, the researchers determined a much more precise “age model” for the end-Permian extinction, which now appears to have lasted about 60,000 years — with an uncertainty of 48,000 years — and was immediately preceded by a sharp increase in carbon dioxide in the oceans.
‘Spiraling toward the truth’
The new timeline adds weight to the theory that the extinction was triggered by massive volcanic eruptions from the Siberian Traps that released volatile chemicals, including carbon dioxide, into the atmosphere and oceans. With such a short extinction timeline, Bowring says it is possible that a single, catastrophic pulse of magmatic activity triggered an almost instantaneous collapse of all global ecosystems.
To confirm whether the Siberian Traps are indeed the extinction’s smoking gun, Burgess and Bowring plan to determine an equally precise timeline for the Siberian Traps eruptions, and will compare it to the new extinction timeline to see where the two events overlap. The researchers will investigate additional areas in China to see if the duration of the extinction can be even more precisely determined.
“We’ve refined our approach, and now we have higher accuracy and precision,” Bowring says. “You can think of it as slowly spiraling in toward the truth.”
‘Steak-knife’ teeth reveal ecology of oldest land predators
The first top predators to walk on land were not afraid to bite off more than they could chew, a University of Toronto Mississauga study has found.
Graduate student and lead author Kirstin Brink along with Professor Robert Reisz from U of T Mississauga’s Department of Biology suggest that Dimetrodon, a carnivore that walked on land between 298 million and 272 million years ago, was the first terrestrial vertebrate to develop serrated ziphodont teeth.
According to the study published in Nature Communications, ziphodont teeth, with their serrated edges, produced a more-efficient bite and would have allowed Dimetrodon to eat prey much larger than itself.
While most meat-eating dinosaurs possessed ziphodont teeth, fossil evidence suggests serrated teeth first evolved in Dimetrodon some 40 million years earlier than theropod dinosaurs.
“Technologies such as scanning electron microscope (SEM) and histology allowed us to examine these teeth in detail to reveal previously unknown patterns in the evolutionary history of Dimetrodon,” Brink said.
The four-meter-long Dimetrodon was the top of the terrestrial food chain in the Early Permian Period and is considered to be the forerunner of mammals.
According to Brink and Reisz’s research, Dimetrodon had a diversity of previously unknown tooth structures and were also the first terrestrial vertebrate to develop cusps — teeth with raised points on the crown, which are dominant in mammals.
The study also suggests ziphodont teeth were confined to later species of Dimetrodon, indicating a gradual change in feeding habits.
“This research is an important step in reconstructing the structure of ancient complex communities,” Reisz said.
“Teeth tell us a lot more about the ecology of animals than just looking at the skeleton.”
“We already know from fossil evidence which animals existed at that time but now with this type of research we are starting to piece together how the members of these communities interacted.”
Brink and Reisz studied the changes in Dimetrodon teeth across 25 million years of evolution.
The analysis indicated the changes in tooth structure occurred in the absence of any significant evolution in skull morphology. This, Brink and Reisz suggest, indicates a change in feeding style and trophic interactions.
“The steak knife configuration of these teeth and the architecture of the skull suggest Dimetrodon was able to grab and rip and dismember large prey,” Reisz said.
“Teeth fossils have attracted a lot of attention in dinosaurs but much less is known about the animals that lived during this first chapter in terrestrial evolution.”
Meet Xenoceratops: Canada’s Newest Horned Dinosaur
Nov. 8, 2012 — Scientists have named a new species of horned dinosaur (ceratopsian) from Alberta, Canada. Xenoceratops foremostensis (Zee-NO-Sare-ah-tops) was identified from fossils originally collected in 1958. Approximately 20 feet long and weighing more than 2 tons, the newly identified plant-eating dinosaur represents the oldest known large-bodied horned dinosaur from Canada
Research describing the new species is published in the October 2012 issue of the Canadian Journal of Earth Sciences.
“Starting 80 million years ago, the large-bodied horned dinosaurs in North America underwent an evolutionary explosion,” said lead author Dr. Michael Ryan, curator of vertebrate paleontology at The Cleveland Museum of Natural History. “Xenoceratops shows us that even the geologically oldest ceratopsids had massive spikes on their head shields and that their cranial ornamentation would only become more elaborate as new species evolved.”
Xenoceratops (Xeno + ceratops) means “alien horned-face,” referring to the strange pattern of horns on its head and the scarcity of horned dinosaur fossils from this part of the fossil record. It also honors the Village of Foremost, located close to where the dinosaur was discovered. Xenoceratops had a parrot-like beak with two long brow horns above its eyes. A large frill protruded from the back of its skull featuring two huge spikes.
“Xenoceratops provides new information on the early evolution of ceratopsids, the group of large-bodied horned dinosaurs that includes Triceratops,” said co-author Dr. David Evans of the Royal Ontario Museum and University of Toronto. “The early fossil record of ceratopsids remains scant, and this discovery highlights just how much more there is to learn about the origin of this diverse group.”
The new dinosaur is described from skull fragments from at least three individuals from the Foremost Formation originally collected by Dr. Wann Langston Jr. in the 1950s, and is currently housed in the Canadian Museum of Nature in Ottawa, Canada. Ryan and Evans stumbled upon the undescribed material more than a decade ago and recognized the bones as a new type of horned dinosaur. Evans later discovered a 50-year-old plaster field jacket at the Canadian Museum of Nature containing more skull bones from the same fossil locality and had them prepared in his lab at the Royal Ontario Museum.
This dinosaur is just the latest in a series of new finds being made by Ryan and Evans as part of their Southern Alberta Dinosaur Project, which is designed to fill in gaps in our knowledge of Late Cretaceous dinosaurs and study their evolution. This project focuses on the paleontology of some of the oldest dinosaur-bearing rocks in Alberta, which is less intensely studied than that of the famous badlands of Dinosaur Provincial Park and Drumheller.
“This discovery of a previously unknown species also drives home the importance of having access to scientific collections,” says co-author Kieran Shepherd, curator of paleobiology for the Canadian Museum of Nature, which holds the specimen. “The collections are an untapped source of new material for study, and offer the potential for many new discoveries.”
Xenoceratops was identified by a team comprising palaeontologists Dr. Michael J. Ryan, curator of vertebrate paleontology at The Cleveland Museum of Natural History; and Dr. David Evans, curator, vertebrate palaeontology of the Department of Natural History at the Royal Ontario Museum; as well as Kieran Shepherd, curator of paleobiology for the Canadian Museum of Nature.
How Could Dinosaurs Weigh Up to 80 Tons? New Research On Sauropod Gigantism
Jan. 14, 2014 — Sauropods, the largest land animals in Earth’s history, are still mightily puzzling the scientists. These plant-eating dinosaurs with their long necks and small heads could reach a height of 10 meters or more and dominated all other land vertebrates in terms of size. They could weigh up to 80 tons, more than any other known land vertebrate. One question that has been intensely debated is how these giants of the animal kingdom regulated their own body temperature.
According to the calculations of the Mainz-based ecologist, the body temperature of these animals did not increase with body weight. Her estimates indicate that sauropods may have had an average body temperature of some 28 degrees Celsius. The upper limit for the body temperature that can be tolerated by vertebrate species living today is 45 degrees Celsius. The body temperatures that Griebeler postulates for the sauropods are thus well below those of today’s endothermic vertebrates but consistent with those of ectothermic monitor lizards. Her calculations of sauropod body temperature take into account the relationship between the maximum rate of growth and the basal metabolic rate of an animal, whereby the latter is largely determined by body temperature.
Griebeler’s work is part of a collection that brings together the results of recent research into sauropod gigantism. The gigantism of these vertebrates, unique in the history of Earth, raises many questions, such as why no other land creatures have ever achieved this size and what their bauplan, physiology, and life cycle would have been like. The collection put together by the leading open access journal PLOS ONE consists of 14 contributions from the fields of ecology, morphology, animal nutrition, and paleontology that all address the fundamental question of how the sauropods managed to become so extraordinarily massive.
“We are pleased that this new research is freely accessible not only to other scientists, but also to sauropod fans,” said PD Dr. Eva Maria Griebeler. She and Dr. Jan Werner are members of the research group “Biology of the Sauropod Dinosaurs: The Evolution of Gigantism (FOR 533),” funded by the German Research Foundation (DFG). The collection was initiated as a result of a related international conference on this subject. Both scientists from the Ecology division at the Institute of Zoology at Mainz University have been working for more than six years within this research group. They have written three of the 14 contributions in the collection.
In one article, Jan Werner and his colleague Koen Stein of the University of Bonn describe a new method of determining the density of bone tissue and juxtapose sauropod data and results extrapolated for comparable endothermic mammals. Although the bone structure and the density of certain tissues of sauropods were similar to those of today’s mammals, the results do not conclusively demonstrate that sauropods were also endothermic animals. Other functional aspects, such as similar weight-bearing stresses, could have resulted in the development of convergent forms of bone tissue.
Another article looks at the reproductive biology of sauropods. Here Werner and Griebeler discuss the hypothesis that a high rate of reproduction contributed to the gigantism of the large dinosaurs. They discovered that the reproductive pattern of most dinosaurs was similar to that of modern reptiles and birds. The reproductive pattern of theropods, i.e., ancestors of the modern birds, turned out to be comparable with that of birds, prosauropods, and sauropods rather than reptiles. However, contrary to the assumptions of previous studies, the calculations of the Mainz scientists did not corroborate the hypothesis that the large dinosaurs would have laid a particularly large number of eggs. In terms of total eggs produced annually, this number could not have exceeded 200 to 400 eggs for a sauropod weighing 75 tons. Today’s large sea turtles are known to lay clutches in this range.
First Dinosaurs Identified from Saudi Arabia
Jan. 7, 2014 — Dinosaur fossils are exceptionally rare in the Arabian Peninsula. An international team of scientists from Uppsala University, Museum Victoria, Monash University, and the Saudi Geological Survey have now uncovered the first record of dinosaurs from Saudi Arabia.
What is now dry desert was once a beach littered with the bones and teeth of ancient marine reptiles and dinosaurs.
A string of vertebrae from the tail of a huge “Brontosaurus-like” sauropod, together with some shed teeth from a carnivorous theropod represent the first formally identified dinosaur fossils from Saudi Arabia, and were found in the north-western part of the Kingdom along the coast of the Red Sea.
The remains were discovered during excavations conducted by a team of scientists working under the auspices of the Saudi Geological Survey, Jeddah.
The dinosaur finds were recently published in the scientific journal PLOS ONE and jointly authored by participating researchers from Sweden, Australia and Saudi Arabia.
“Dinosaur fossils are exceptionally rare in the Arabian Peninsula, with only a handful of highly fragmented bones documented this far” says Dr Benjamin Kear, based at Uppsala University in Sweden and lead author of the study.
“This discovery is important not only because of where the remains were found, but also because of the fact that we can actually identify them. Indeed, these are the first taxonomically recognizable dinosaurs reported from the Arabian Peninsula” Dr Kear continues.
“Dinosaur remains from the Arabian Peninsula and the area east of the Mediterranean Sea are exceedingly rare because sedimentary rocks deposited in streams and rivers during the Age of Dinosaurs are rare, particularly in Saudi Arabia itself” says Dr Tom Rich from Museum Victoria in Australia.
When these dinosaurs were alive, the Arabian landmass was largely underwater and formed the north-western coastal margin of the African continent.
“The hardest fossil to find is the first one. Knowing that they occur in a particular area and the circumstances under which they do, makes finding more fossils significantly less difficult” says Dr Rich.
The teeth and bones are approximately 72 million years old.
Two types of dinosaur were described from the assemblage, a bipedal meat-eating abelisaurid distantly related to Tyrannosaurus but only about six metres long, and a plant-eating titanosaur perhaps up to 20 metres in length.
Similar dinosaurs have been found in North Africa, Madagascar and as far away as South America.
Fossil Pigments Reveal the Colors of Ancient Sea Monsters
Jan. 8, 2014 — During the Age of the dinosaurs, huge reptiles, such as mosasaurs and ichthyosaurs, ruled the seas. Previously, scientists could only guess what colours these spectacular animals had; however, pigment preserved in fossilised skin has now been analysed at SP Technical Research Institute of Sweden and MAX IV Laboratory, Lund University, Sweden. The unique soft tissue remains were obtained from a 55 million-year-old leatherback turtle, an 85 million-year-old mosasaur and a 196-190 million-year-old ichthyosaur. This is the first time that the colour scheme of any extinct marine animal has been revealed.
“This is fantastic! When I started studying at Lund University in 1993, the film Jurassic Park had just been released, and that was one of the main reasons why I got interested in biology and palaeontology. Then, 20 years ago, it was unthinkable that we would ever find biological remains from animals that have been extinct for many millions of years, but now we are there and I am proud to be a part of it,” said Johan Lindgren about the discovery of the ancient pigment molecules.
Johan Lindgren is a scientist at Lund University in Sweden, and he is the leader of the international research team that has studied the fossils. Together with colleagues from Denmark, England and the USA, he now presents the results of their study in the scientific journal Nature. The most sensational aspect of the investigation is that it can now be established that these ancient marine reptiles were, at least partially, dark-coloured in life, something that probably contributed to more efficient thermoregulation, as well as providing means for camouflage and protection against harmful UV radiation.
The analysed fossils are composed of skeletal remains, in addition to dark skin patches containing masses of micrometre-sized, oblate bodies. These microbodies were previously interpreted to be the fossilised remains of those bacteria that once contributed to the decomposition and degradation of the carcasses. However, by studying the chemical content of the soft tissues, Lindgren and his colleagues are now able to show that they are in fact remnants of the animals’ own colours, and that the micrometre-sized bodies are fossilised melanosomes, or pigment-containing cellular organelles.
“Our results really are amazing. The pigment melanin is almost unbelievably stable. Our discovery enables us to make a journey through time and to revisit these ancient reptiles using their own biomolecules. Now, we can finally use sophisticated molecular and imaging techniques to learn what these animals looked like and how they lived,” said Per Uvdal, one of the co-authors of the study, and who works at the MAX IV Laboratory.
Mosasaurs (98-66 million years ago) are giant marine lizards that could reach 15 metres in body length, whereas ichthyosaurs (250-94 million years ago) could become even larger. Both ichthyosaurs and mosasaurs died out during the Cretaceous Period, but leatherback turtles are still around today. A conspicuous feature of the living leatherback turtle, Dermochelys, is that it has an almost entirely black back, which probably contributes to its worldwide distribution. The ability of leatherback turtles to survive in cold climates has mainly been attributed to their huge size, but it has also been shown that these animals bask at the sea surface during daylight hours. The black colour enables them to heat up faster and to reach higher body temperatures than had they instead been lightly coloured.
“The fossil leatherback turtle probably had a similar colour scheme and lifestyle as does Dermochelys. Similarly, mosasaurs and ichthyosaurs, which also had worldwide distributions, may have used their darkly coloured skin to heat up quickly between dives,” said Johan Lindgren.
If their interpretations are correct, then at least some ichthyosaurs were uniformly dark-coloured in life, unlike most living marine animals. However, the modern deep-diving sperm whale has a similar colour scheme, perhaps as camouflage in a world without light, or as UV protection, given that these animals spend extended periods of time at or near the sea surface in between dives. The ichthyosaurs are also believed to have been deep-divers, and if their colours were similar to those of the living sperm whale, then this would also suggest a similar lifestyle, according to Lindgren.
Functional Importance of Dinosaur Beaks Illuminated
Dec. 2, 2013 — Why beaks evolved in some theropod dinosaurs and what their function might have been is the subject of new research by an international team of palaeontologists published this week in PNAS (Proceedings of the National Academy of Sciences).
Beaks are a typical hallmark of modern birds and can be found in a huge variety of forms and shapes. However, it is less well known that keratin-covered beaks had already evolved in different groups of dinosaurs during the Cretaceous Period.
Employing high-resolution X-ray computed tomography (CT scanning) and computer simulations, Dr Stephan Lautenschlager and Dr Emily Rayfield of the University of Bristol with Dr Perle Altangerel (National University of Ulaanbaatar) and Professor Lawrence Witmer (Ohio University) used digital models to take a closer look at these dinosaur beaks.
The focus of the study was the skull of Erlikosaurus andrewsi, a 3-4m (10-13ft) large herbivorous dinosaur called a therizinosaur, which lived more than 90 million years ago during the Cretaceous Period in what is now Mongolia, and which shows evidence that part of its snout was covered by a keratinous beak.
This new study reveals that keratinous beaks played an important role in stabilizing the skeletal structure during feeding, making the skull less susceptible to bending and deformation.
Lead author Dr Stephan Lautenschlager of Bristol’s School of Earth Sciences said: “It has classically been assumed that beaks evolved to replace teeth and thus save weight, as a requirement for the evolution of flight. Our results, however, indicate that keratin beaks were in fact beneficial to enhance the stability of the skull during biting and feeding.”
Co-author Dr Emily Rayfield, Reader of Palaeobiology at Bristol said: “Using Finite Element Analysis, a computer modelling technique routinely used in engineering, we were able to deduce very accurately how bite and muscle forces affected the skull of Erlikosaurus during the feeding process. This further allowed us to identify the importance of soft-tissue structures, such as the keratinous beak, which are normally not preserved in fossils.”
Co-author Lawrence Witmer, Chang Professor of Paleontology at the Ohio University Heritage College of Osteopathic Medicine said: “Beaks evolved several times during the transitions from dinosaurs to modern birds, usually accompanied by the partial or complete loss of teeth and our study now shows that keratin-covered beaks represent a functional innovation during dinosaur evolution.”
This work was funded by a research fellowship to Stephan Lautenschlager from the German Volkswagen Foundation and grants from the National Science Foundation to Lawrence
New Evidence for Warm-Blooded Dinosaurs
July 17, 2013 — University of Adelaide research has shown new evidence that dinosaurs were warm-blooded like birds and mammals, not cold-blooded like reptiles as commonly believed.
In a paper published in PLoS ONE, Professor Roger Seymour of the University’s School of Earth and Environmental Sciences, argues that cold-blooded dinosaurs would not have had the required muscular power to prey on other animals and dominate over mammals as they did throughout the Mesozoic period.
“Much can be learned about dinosaurs from fossils but the question of whether dinosaurs were warm-blooded or cold-blooded is still hotly debated among scientists,” says Professor Seymour.
“Some point out that a large saltwater crocodile can achieve a body temperature above 30°C by basking in the sun, and it can maintain the high temperature overnight simply by being large and slow to change temperature.
“They say that large, cold-blooded dinosaurs could have done the same and enjoyed a warm body temperature without the need to generate the heat in their own cells through burning food energy like warm-blooded animals.”
In his paper, Professor Seymour asks how much muscular power could be produced by a crocodile-like dinosaur compared to a mammal-like dinosaur of the same size.
Saltwater crocodiles reach over a tonne in weight and, being about 50% muscle, have a reputation for being extremely powerful animals.
But drawing from blood and muscle lactate measurements collected by his collaborators at Monash University, University of California and Wildlife Management International in the Northern Territory, Professor Seymour shows that a 200 kg crocodile can produce only about 14% of the muscular power of a mammal at peak exercise, and this fraction seems to decrease at larger body sizes.
“The results further show that cold-blooded crocodiles lack not only the absolute power for exercise, but also the endurance, that are evident in warm-blooded mammals,” says Professor Seymour.
“So, despite the impression that saltwater crocodiles are extremely powerful animals, a crocodile-like dinosaur could not compete well against a mammal-like dinosaur of the same size.
“Dinosaurs dominated over mammals in terrestrial ecosystems throughout the Mesozoic. To do that they must have had more muscular power and greater endurance than a crocodile-like physiology would have allowed.”
His latest evidence adds to that of earlier work he did on blood flow to leg bones which concluded that the dinosaurs were possibly even more active than mammals.
Big-Nosed, Long-Horned Dinosaur Discovered in Utah: Dinosaur in Same Family as Triceratops
July 17, 2013 — A remarkable new species of horned dinosaur has been unearthed in Grand Staircase-Escalante National Monument, southern Utah. The huge plant-eater inhabited Laramidia, a landmass formed when a shallow sea flooded the central region of North America, isolating western and eastern portions for millions of years during the Late Cretaceous Period. The newly discovered dinosaur, belonging to the same family as the famous Triceratops, was announced today in the British scientific journal, Proceedings of the Royal Society B.
The study, funded in large part by the Bureau of Land Management and the National Science Foundation, was led by Scott Sampson, when he was the Chief Curator at the Natural History Museum of Utah at the University of Utah. Sampson is now the Vice President of Research and Collections at the Denver Museum of Nature & Science. Additional authors include Eric Lund (Ohio University; previously a University of Utah graduate student), Mark Loewen (Natural History Museum of Utah and Dept. of Geology and Geophysics, University of Utah), Andrew Farke (Raymond Alf Museum), and Katherine Clayton (Natural History Museum of Utah).
Horned dinosaurs, or “ceratopsids,” were a group of big-bodied, four-footed herbivores that lived during the Late Cretaceous Period. As epitomized by Triceratops, most members of this group have huge skulls bearing a single horn over the nose, one horn over each eye, and an elongate, bony frill at the rear. The newly discovered species, Nasutoceratops titusi, possesses several unique features, including an oversized nose relative to other members of the family, and exceptionally long, curving, forward-oriented horns over the eyes. The bony frill, rather than possessing elaborate ornamentations such as hooks or spikes, is relatively unadorned, with a simple, scalloped margin. Nasutoceratops translates as “big-nose horned face,” and the second part of the name honors Alan Titus, Monument Paleontologist at Grand Staircase-Escalante National Monument, for his years of research collaboration.
For reasons that have remained obscure, all ceratopsids have greatly enlarged nose regions at the front of the face. Nasutoceratops stands out from its relatives, however, in taking this nose expansion to an even greater extreme. Scott Sampson, the study’s lead author, stated, “The jumbo-sized schnoz of Nasutoceratops likely had nothing to do with a heightened sense of smell — since olfactory receptors occur further back in the head, adjacent to the brain — and the function of this bizarre feature remains uncertain.”
Paleontologists have long speculated about the function of horns and frills on horned dinosaurs. Ideas have ranged from predator defense and controlling body temperature to recognizing members of the same species. Yet the dominant hypothesis today focuses on competing for mates — that is, intimidating members of the same sex and attracting members of the opposite sex. Peacock tails and deer antlers are modern examples. In keeping with this view, Mark Loewen, a co-author of the study claimed that, “The amazing horns of Nasutoceratops were most likely used as visual signals of dominance and, when that wasn’t enough, as weapons for combatting rivals.”
A Treasure Trove of Dinosaurs on the Lost Continent of Laramidia
Nasutoceratops was discovered in Grand Staircase-Escalante National Monument (GSENM), which encompasses 1.9 million acres of high desert terrain in south-central Utah. This vast and rugged region, part of the National Landscape Conservation System administered by the Bureau of Land Management, was the last major area in the lower 48 states to be formally mapped by cartographers. Today GSENM is the largest national monument in the United States. Sampson proclaimed that, “Grand Staircase-Escalante National Monument is the last great, largely unexplored dinosaur boneyard in the lower 48 states.”
For most of the Late Cretaceous, exceptionally high sea levels flooded the low-lying portions of several continents around the world. In North America, a warm, shallow sea called the Western Interior Seaway extended from the Arctic Ocean to the Gulf of Mexico, subdividing the continent into eastern and western landmasses, known as Appalachia and Laramidia, respectively. Whereas little is known of the plants and animals that lived on Appalachia, the rocks of Laramidia exposed in the Western Interior of North America have generated a plethora of dinosaur remains. Laramidia was less than one-third the size of present day North America, approximating the area of Australia.
Most known Laramidian dinosaurs were concentrated in a narrow belt of plains sandwiched between the seaway to the east and mountains to the west. Today, thanks to an abundant fossil record and more than a century of collecting by paleontologists, Laramidia is the best known major landmass for the entire Age of Dinosaurs, with dig sites spanning from Alaska to Mexico. Utah was located in the southern part of Laramidia, which has yielded far fewer dinosaur remains than the fossil-rich north. The world of dinosaurs was much warmer than the present day; Nasutoceratops lived in a subtropical swampy environment about 100 km from the seaway.
Beginning in the 1960’s, paleontologists began to notice that the same major groups of dinosaurs seemed to be present all over this Late Cretaceous landmass, but different species of these groups occurred in the north (for example, Alberta and Montana) than in the south (New Mexico and Texas). This finding of “dinosaur provincialism” was very puzzling, given the giant body sizes of many of the dinosaurs together with the diminutive dimensions of Laramidia. Currently, there are five giant (rhino-to-elephant-sized) mammals on the entire continent of Africa. Seventy-six million years ago, there may have been more than two dozen giant dinosaurs living on a landmass about one-quarter that size. Co-author Mark Loewen noted that, “We’re still working to figure out how so many different kinds of giant animals managed to co-exist on such a small landmass?” The new fossils from GSENM are helping us explore the range of possible answers, and even rule out some alternatives.
During the past dozen years, crews from the Natural History Museum of Utah, the Denver Museum of Nature & Science and several other partner institutions (e.g., the Utah Geologic Survey, the Raymond Alf Museum of Paleontology, and the Bureau of Land Management) have unearthed a new assemblage of more than a dozen dinosaurs in GSENM. In addition to Nasutoceratops, the collection includes a variety of other plant-eating dinosaurs — among them duck-billed hadrosaurs, armored ankylosaurs, dome-headed pachycephalosaurs, and two other horned dinosaurs, Utahceratops and Kosmoceratops — together with carnivorous dinosaurs great and small, from “raptor-like” predators to a mega-sized tyrannosaur named Teratophoneus. Amongst the other fossil discoveries are fossil plants, insect traces, clams, fishes, amphibians, lizards, turtles, crocodiles, and mammals. Together, this diverse bounty of fossils is offering one of the most comprehensive glimpses into a Mesozoic ecosystem. Remarkably, virtually all of the identifiable dinosaur remains found in GSENM belong to new species, providing strong support for the dinosaur provincialism hypothesis.
Andrew Farke, a study co-author, noted that, “Nasutoceratops is one of a recent landslide of ceratopsid discoveries, which together have established these giant plant-eaters as the most diverse dinosaur group on Laramidia.”
Eric Lund, another co-author as well as the discoverer of the new species, stated that, “Nasutoceratops is a wondrous example of just how much more we have to learn about with world of dinosaurs. Many more exciting fossils await discovery in Grand Staircase-Escalante National Monument.”