Big-Nosed, Long-Horned Dinosaur Discovered in Utah: Dinosaur in Same Family as Triceratops

July 17, 2013 — A remarkable new species of horned dinosaur has been unearthed in Grand Staircase-Escalante National Monument, southern Utah. The huge plant-eater inhabited Laramidia, a landmass formed when a shallow sea flooded the central region of North America, isolating western and eastern portions for millions of years during the Late Cretaceous Period. The newly discovered dinosaur, belonging to the same family as the famous Triceratops, was announced today in the British scientific journal, Proceedings of the Royal Society B.
The study, funded in large part by the Bureau of Land Management and the National Science Foundation, was led by Scott Sampson, when he was the Chief Curator at the Natural History Museum of Utah at the University of Utah. Sampson is now the Vice President of Research and Collections at the Denver Museum of Nature & Science. Additional authors include Eric Lund (Ohio University; previously a University of Utah graduate student), Mark Loewen (Natural History Museum of Utah and Dept. of Geology and Geophysics, University of Utah), Andrew Farke (Raymond Alf Museum), and Katherine Clayton (Natural History Museum of Utah).

Horned dinosaurs, or “ceratopsids,” were a group of big-bodied, four-footed herbivores that lived during the Late Cretaceous Period. As epitomized by Triceratops, most members of this group have huge skulls bearing a single horn over the nose, one horn over each eye, and an elongate, bony frill at the rear. The newly discovered species, Nasutoceratops titusi, possesses several unique features, including an oversized nose relative to other members of the family, and exceptionally long, curving, forward-oriented horns over the eyes. The bony frill, rather than possessing elaborate ornamentations such as hooks or spikes, is relatively unadorned, with a simple, scalloped margin. Nasutoceratops translates as “big-nose horned face,” and the second part of the name honors Alan Titus, Monument Paleontologist at Grand Staircase-Escalante National Monument, for his years of research collaboration.

For reasons that have remained obscure, all ceratopsids have greatly enlarged nose regions at the front of the face. Nasutoceratops stands out from its relatives, however, in taking this nose expansion to an even greater extreme. Scott Sampson, the study’s lead author, stated, “The jumbo-sized schnoz of Nasutoceratops likely had nothing to do with a heightened sense of smell — since olfactory receptors occur further back in the head, adjacent to the brain — and the function of this bizarre feature remains uncertain.”

Paleontologists have long speculated about the function of horns and frills on horned dinosaurs. Ideas have ranged from predator defense and controlling body temperature to recognizing members of the same species. Yet the dominant hypothesis today focuses on competing for mates — that is, intimidating members of the same sex and attracting members of the opposite sex. Peacock tails and deer antlers are modern examples. In keeping with this view, Mark Loewen, a co-author of the study claimed that, “The amazing horns of Nasutoceratops were most likely used as visual signals of dominance and, when that wasn’t enough, as weapons for combatting rivals.”

A Treasure Trove of Dinosaurs on the Lost Continent of Laramidia

Nasutoceratops was discovered in Grand Staircase-Escalante National Monument (GSENM), which encompasses 1.9 million acres of high desert terrain in south-central Utah. This vast and rugged region, part of the National Landscape Conservation System administered by the Bureau of Land Management, was the last major area in the lower 48 states to be formally mapped by cartographers. Today GSENM is the largest national monument in the United States. Sampson proclaimed that, “Grand Staircase-Escalante National Monument is the last great, largely unexplored dinosaur boneyard in the lower 48 states.”

For most of the Late Cretaceous, exceptionally high sea levels flooded the low-lying portions of several continents around the world. In North America, a warm, shallow sea called the Western Interior Seaway extended from the Arctic Ocean to the Gulf of Mexico, subdividing the continent into eastern and western landmasses, known as Appalachia and Laramidia, respectively. Whereas little is known of the plants and animals that lived on Appalachia, the rocks of Laramidia exposed in the Western Interior of North America have generated a plethora of dinosaur remains. Laramidia was less than one-third the size of present day North America, approximating the area of Australia.

Most known Laramidian dinosaurs were concentrated in a narrow belt of plains sandwiched between the seaway to the east and mountains to the west. Today, thanks to an abundant fossil record and more than a century of collecting by paleontologists, Laramidia is the best known major landmass for the entire Age of Dinosaurs, with dig sites spanning from Alaska to Mexico. Utah was located in the southern part of Laramidia, which has yielded far fewer dinosaur remains than the fossil-rich north. The world of dinosaurs was much warmer than the present day; Nasutoceratops lived in a subtropical swampy environment about 100 km from the seaway.

Beginning in the 1960’s, paleontologists began to notice that the same major groups of dinosaurs seemed to be present all over this Late Cretaceous landmass, but different species of these groups occurred in the north (for example, Alberta and Montana) than in the south (New Mexico and Texas). This finding of “dinosaur provincialism” was very puzzling, given the giant body sizes of many of the dinosaurs together with the diminutive dimensions of Laramidia. Currently, there are five giant (rhino-to-elephant-sized) mammals on the entire continent of Africa. Seventy-six million years ago, there may have been more than two dozen giant dinosaurs living on a landmass about one-quarter that size. Co-author Mark Loewen noted that, “We’re still working to figure out how so many different kinds of giant animals managed to co-exist on such a small landmass?” The new fossils from GSENM are helping us explore the range of possible answers, and even rule out some alternatives.

During the past dozen years, crews from the Natural History Museum of Utah, the Denver Museum of Nature & Science and several other partner institutions (e.g., the Utah Geologic Survey, the Raymond Alf Museum of Paleontology, and the Bureau of Land Management) have unearthed a new assemblage of more than a dozen dinosaurs in GSENM. In addition to Nasutoceratops, the collection includes a variety of other plant-eating dinosaurs — among them duck-billed hadrosaurs, armored ankylosaurs, dome-headed pachycephalosaurs, and two other horned dinosaurs, Utahceratops and Kosmoceratops — together with carnivorous dinosaurs great and small, from “raptor-like” predators to a mega-sized tyrannosaur named Teratophoneus. Amongst the other fossil discoveries are fossil plants, insect traces, clams, fishes, amphibians, lizards, turtles, crocodiles, and mammals. Together, this diverse bounty of fossils is offering one of the most comprehensive glimpses into a Mesozoic ecosystem. Remarkably, virtually all of the identifiable dinosaur remains found in GSENM belong to new species, providing strong support for the dinosaur provincialism hypothesis.

Andrew Farke, a study co-author, noted that, “Nasutoceratops is one of a recent landslide of ceratopsid discoveries, which together have established these giant plant-eaters as the most diverse dinosaur group on Laramidia.”

Eric Lund, another co-author as well as the discoverer of the new species, stated that, “Nasutoceratops is a wondrous example of just how much more we have to learn about with world of dinosaurs. Many more exciting fossils await discovery in Grand Staircase-Escalante National Monument.”

Tooth Is ‘Smoking Gun’ Evidence That Tyrannosaurus Rex Was Hunter, Killer

July 16, 2013 — Tyrannosaurus rex has long been popular with kids and moviemakers as the most notorious, vicious killing machine to roam the planet during the age of the dinosaurs.

73

So, it may come as a shock that for more than a century some paleontologists have argued that T. rex was a scavenger, not a true predator — more like a vulture than a lion. Indeed, a lack of definitive fossil proof of predation in the famous theropod has stirred controversy among scientists — until now.

“T. rex is the monster of our dreams,” said David Burnham, preparator of vertebrate paleontology at the Biodiversity Institute at the University of Kansas. “But ever since it was discovered in Montana and named in the early 1900s, there’s been a debate about whether these large carnivores were scavengers or predators. Most people assume they were predators, but the scientific evidence for predation has been really elusive. Yes, we’ve found lots of dinosaur skeletons with tooth marks that had been chewed up by something. But what did that really prove? Yes, these large carnivores fed on other dinosaurs — but did they eat them while they were alive or dead? That’s where the debate came in. Where was the evidence for hunt and kill?”

Now, Burnham is part of a team that has unearthed “smoking gun” physical proof that T. rex was indeed a predator, hunter and killer. In the Hell Creek Formation of South Dakota, Burnham and colleagues discovered the crown of a T. rex tooth lodged in the fossilized spine of a plant-eating hadrosaur that seems to have survived the attack. The team describes the find in the current issue of the Proceedings of the National Academy of Sciences.

Burnham’s KU co-authors are Bruce Rothschild and the late Larry Martin, along with former KU student Robert DePalma II of The Palm Beach Museum of Natural History and Peter Larson of the Black Hills Institute of Geological Research.

“Robert DePalma was a student here at KU doing his master’s thesis in the Hell Creek formation,” said Burnham. “He found a specimen that represents the tail of one of these hadrosaurs. It had a distorted-looking bone growth. He came to me and said, ‘What do you think is causing this?’ So we cleaned it and could see a tooth embedded in one of these duck-billed dinosaur vertebrae. Then we went to Lawrence Memorial Hospital and used a CT machine to scan the bones — and we saw all of the tooth.”

Previous evidence for predation included T. rex fossil discoveries with preserved stomach contents that included the bones of a young ceratopsian (e.g., Triceratops or one of its kin). However, there was no evidence to conclude whether the ceratopsian was alive or dead when the T. rex made a snack of it.

By contrast, Burnham said the tooth was definitive evidence of hunting, after carefully measuring its length and the size of its serrations to ensure that it came from the mouth of a T. rex.

“Lo and behold, the tooth plotted out just exactly with T. rex — the only known large theropod from the Hell Creek formation,” he said. “We knew we had a T. rex tooth in the tail of a hadrosaur. Better yet, we knew the hadrosaur got away because the bone had begun to heal. Quite possibly it was being pursued by the T. rex when it was bitten. It was going in the right direction — away. The hadrosaur escaped by some stroke of luck. The better luck is finding this fossil with the preserved evidence.”

Because T. rex regularly shed its teeth, the predator went away hungry, but otherwise no worse for the encounter. It would have grown a new tooth to replace the one left behind in the hadrosaur’s tail. This could have been a typical example of T. rex’s hunting efforts, even if it didn’t result in a meal.

“To make an analogy to modern animals, when lions go attack a herd of herbivores, they go after the sick and the slow,” Burnham said. “Most of the time, hadrosaurs traveled in packs. This hadrosaur may have been a little slower, or this T. rex may have been a little faster — at least fast enough to almost catch a duck-billed dinosaur.”

This concrete proof of T. rex’s predation continues a long relationship between KU paleontologists and the theropod, which lived in North America during the Late Cretaceous, some 65 million years ago. KU graduate Barnum Brown discovered the first documented remains of the dinosaur in Wyoming in 1900.

Mum and Dad Dinosaurs Shared the Work

May 15, 2013 — A study into the brooding behaviour of birds has revealed their dinosaur ancestors shared the load when it came to incubation of eggs.

23

Research into the incubation behaviour of birds suggests the type of parental care carried out by their long extinct ancestors.

The study aimed to test the hypothesis that data from extant birds could be used to predict the incubation behaviour of Theropods, the group of carnivorous dinosaurs from which birds descended.

The paper, out today in Biology Letters, was co-authored by Dr Charles Deeming and Dr Marcello Ruta from the University of Lincoln’s School of Life Sciences and Dr Geoff Birchard from George Mason University, Virginia.

By taking into account factors known to affect egg and clutch size in living bird species, the authors — who started their investigation last summer at the University of Lincoln’s Riseholme campus — found that shared incubation was the ancestral incubation behaviour. Previously it had been claimed that only male Theropod dinosaurs incubated the eggs.

Dr Deeming said: “In 2009 a study in the journal Science suggested that it was males of the small carnivorous dinosaurs Troodon and Oviraptor that incubated their eggs. Irrespective of whether you accept the idea of Theropod dinosaurs sitting on eggs like birds or not, the analysis raised some concerns that we wanted to address. We decided to repeat the study with a larger data set and a better understanding of bird biology because other palaeontologists were starting to use the original results in Science in order to predict the incubation behaviour of other dinosaur species. Our analysis of the relationship between female body mass and clutch mass was interesting in its own right but also showed that it was not possible to conclude anything about incubation in extinct distant relatives of the birds.”

Palaeobiologist Dr Ruta was involved in mapping the parental behaviour in modern birds on to an evolutionary tree.

Dr Ruta said: “As always in any study involving fossils, knowledge of extant organisms helps us make inferences about fossils. Fossils have a unique role in shaping our knowledge of the Tree of Life and the dynamics of evolutionary processes. However, as is the case with our study, data from living organisms may augment and refine the potential of fossil studies and may shift existing notions of the biology and behaviour of long extinct creatures.”

Dr Birchard added: “The previous study was carried out to infer the type of parental care in dinosaurs that are closely related to birds. That study proposed that paternal care was present in these dinosaurs and this form of care was the ancestral condition for birds. Our new analysis based on three times as many species as in the previous study indicates that parental care cannot be inferred from simple analyses of the relationship of body size to shape, anatomy, physiologyand behaviour. Such analyses ought to take into account factors such as shared evolutionary history and maturity at hatching. However, our data does suggest that the dinosaurs used in the previous study were likely to be quite mature at birth.”

The project has helped in understanding the factors affecting the evolution of incubation in birds. More importantly it is hoped that the new analysis will assist palaeontologists in their interpretation of future finds of dinosaur reproduction in the fossil record.

Four New Dinosaur Species Identified

May 8, 2013 — Just when dinosaur researchers thought they had a thorough knowledge of ankylosaurs, a family of squat, armour plated, plant eaters, along comes University of Alberta graduate student, Victoria Arbour.
Arbour visited dinosaur fossil collections from Alberta to the U.K. examining skull armour and comparing those head details with other features of the fossilized ankylosaur remains. She made a breakthrough that resurrected research done more than 70 years ago.

Arbour explains that between 1900 and 1930 researchers had determined that small variations in the skull armour and the tail clubs in some ankylosaurs constituted four individual species of the dinosaurs.

“In the 1970s the earlier work was discarded and those four species were lumped into one called species Euoplocephalus,” said Arbour.

“I examined many fossils and found I could group some fossils together because their skull armour corresponded with a particular shape of their tail club,” said Arbour.

Finding common features in fossils that come from the same geologic time is evidence that the original researchers were right says Arbour. “There were in fact four different species represented by what scientists previously thought was only one species, Euoplocephalus.”

The four species span a period of about 10 million years. Arbour’s research shows three of those ankylosaurs species lived at the same time in what is now Dinosaur Provincial Park in southern Alberta.

Arbour says this opens the door to new questions.

“How did these three species shared their habitat, how did they divide food resources and manage to survive?” said Arbour.

Arbour will also look into how slight differences in skull ornamentation and tail shape between the species influenced the animals’ long reign on Earth.

Arbour’s research was published May 8, in the journal PLOS ONE.

Oldest? New ‘Bone-Head’ Dinosaur Hints at Higher Diversity of Small Dinosaurs

May 7, 2013 — Scientists have named a new species of bone-headed dinosaur (pachycephalosaur) from Alberta, Canada. Acrotholus audeti (Ack-RHO-tho-LUS) was identified from both recently discovered and historically collected fossils. Approximately six feet long and weighing about 40 kilograms in life, the newly identified plant-eating dinosaur represents the oldest bone-headed dinosaur in North America, and possibly the world.
Dr. Michael Ryan, curator of vertebrate paleontology at The Cleveland Museum of Natural History, co-authored research describing the new species, which was published May 7, 2013 in the journal Nature Communications.

Acrotholus means “high dome,” referring to its dome-shaped skull, which is composed of solid bone over 10 centimeters (two inches) thick. The name Acrotholus audeti also honors Alberta rancher Roy Audet, on whose land the best specimen was discovered in 2008. Acrotholus walked on two legs and had a greatly thickened, domed skull above its eyes, which was used for display to other members of its species, and may have also been used in head-butting contests. Acrotholus lived about 85 million years ago.

The new dinosaur discovery is based on two skull ‘caps’ from the Milk River Formation of southern Alberta. One of these was collected by the Royal Ontario Museum (ROM) more than 50 years ago. However, a better specimen was found in 2008 by University of Toronto graduate student Caleb Brown during a field expedition organized by Dr. David Evans of the Royal Ontario Museum and University of Toronto, and Ryan.

“Acrotholus provides a wealth of new information on the evolution of bone-headed dinosaurs. Although it is one of the earliest known members this group, its thickened skull dome is surprisingly well-developed for its geological age,” said lead author Evans, ROM curator, vertebrate palaeontology. “More importantly, the unique fossil record of these animals suggests that we are only beginning to understand the diversity of small-bodied plant-eating dinosaurs.”

Small mammals and reptiles can be very diverse and abundant in modern ecosystems, but small dinosaurs (less than 100 kg) are considerably less common than large ones in the fossil record. Whether this pattern is a true reflection of dinosaur communities, or is related to the greater potential for small bones to be destroyed by carnivores and natural decay, has been debated. The massively constructed skull domes of pachycephalosaurs are resistant to destruction, and are much more common than their relatively delicate skeletons — which resemble those of other small plant-eating dinosaurs. Therefore, the researchers suggest that the pachycephalosaur fossil record can provide valuable insights into the diversity of small, plant-eating dinosaurs as a whole.

“We can predict that many new small dinosaur species like Acrotholus are waiting to be discovered by researchers willing to sort through the many small bones that they pick up in the field,” said co-author Ryan of The Cleveland Museum of Natural History. “This fully domed and mature individual suggests that there is an undiscovered, hidden diversity of small-bodied dinosaurs. So when we look back, we need to reimagine the paleoenvironment. There is an evolutionary history that we just don’t know because the fossil record is incomplete. This discovery also highlights the importance of landowners, like Roy Audet, who grant access to their land and allow scientifically important finds to be made.”

This dinosaur is the latest in a series of new finds being made by Evans and Ryan as part of their Southern Alberta Dinosaur Project, which aims to fill in gaps in of the record of Late Cretaceous dinosaurs and study their evolution. This project focuses on the palaeontology of some of the oldest dinosaur-bearing rocks in Alberta, which have been studied less intensely than those of the famous badlands of Dinosaur Provincial Park and Drumheller.

Acrotholus was identified by a team comprising of palaeontologists Evans, of the Royal Ontario Museum; and Ryan, of The Cleveland Museum of Natural History; as well as Ryan Schott, Caleb Brown, and Derek Larson, all graduate students at the University of Toronto who studied under Evans.

What Happened to Dinosaurs’ Predecessors After Earth’s Largest Extinction 252 Million Years Ago?

Predecessors to dinosaurs missed the race to fill habitats emptied when nine out of 10 species disappeared during Earth’s largest mass extinction 252 million years ago.
Or did they?

That thinking was based on fossil records from sites in South Africa and southwest Russia.

It turns out, however, that scientists may have been looking in the wrong places.

Newly discovered fossils from 10 million years after the mass extinction reveal a lineage of animals thought to have led to dinosaurs in Tanzania and Zambia.

That’s still millions of years before dinosaur relatives were seen in the fossil record elsewhere on Earth.

“The fossil record from the Karoo of South Africa, for example, is a good representation of four-legged land animals across southern Pangea before the extinction,” says Christian Sidor, a paleontologist at the University of Washington.

Pangea was a landmass in which all the world’s continents were once joined together. Southern Pangea was made up of what is today Africa, South America, Antarctica, Australia and India.

“After the extinction,” says Sidor, “animals weren’t as uniformly and widely distributed as before. We had to go looking in some fairly unorthodox places.”

Sidor is the lead author of a paper reporting the findings; it appears in this week’s issue of the journal Proceedings of the National Academy of Sciences.

The insights come from seven fossil-hunting expeditions in Tanzania, Zambia and Antarctica funded by the National Science Foundation (NSF). Additional work involved combing through existing fossil collections.

“These scientists have identified an outcome of mass extinctions–that species ecologically marginalized before the extinction may be ‘freed up’ to experience evolutionary bursts then dominate after the extinction,” says H. Richard Lane, program director in NSF’s Division of Earth Sciences.

The researchers created two “snapshots” of four-legged animals about five million years before, and again about 10 million years after, the extinction 252 million years ago.

Prior to the extinction, for example, the pig-sized Dicynodon–said to resemble a fat lizard with a short tail and turtle’s head–was a dominant plant-eating species across southern Pangea.

After the mass extinction, Dicynodon disappeared. Related species were so greatly decreased in number that newly emerging herbivores could then compete with them.

“Groups that did well before the extinction didn’t necessarily do well afterward,” Sidor says.

The snapshot of life 10 million years after the extinction reveals that, among other things, archosaurs roamed in Tanzanian and Zambian basins, but weren’t distributed across southern Pangea as had been the pattern for four-legged animals before the extinction.

Archosaurs, whose living relatives are birds and crocodilians, are of interest to scientists because it’s thought that they led to animals like Asilisaurus, a dinosaur-like animal, and Nyasasaurus parringtoni, a dog-sized creature with a five-foot-long tail that could be the earliest dinosaur.

“Early archosaurs being found mainly in Tanzania is an example of how fragmented animal communities became after the extinction,” Sidor says.

A new framework for analyzing biogeographic patterns from species distributions, developed by paper co-author Daril Vilhena of University of Washington, provided a way to discern the complex recovery.

It revealed that before the extinction, 35 percent of four-legged species were found in two or more of the five areas studied.

Some species’ ranges stretched 1,600 miles (2,600 kilometers), encompassing the Tanzanian and South African basins.

Ten million years after the extinction, there was clear geographic clustering. Just seven percent of species were found in two or more regions.

The technique–a new way to statistically consider how connected or isolated species are from each other–could be useful to other paleontologists and to modern-day biogeographers, Sidor says.

Beginning in the early 2000s, he and his co-authors conducted expeditions to collect fossils from sites in Tanzania that hadn’t been visited since the 1960s, and in Zambia where there had been little work since the 1980s.

Two expeditions to Antarctica provided additional finds, as did efforts to look at museum fossils that had not been fully documented or named.

The fossils turned out to hold a treasure trove of information, the scientists say, on life some 250 million years ago.

Other co-authors of the paper are Adam Huttenlocker, Brandon Peecook, Sterling Nesbitt and Linda Tsuji from University of Washington; Kenneth Angielczyk of the Field Museum of Natural History in Chicago; Roger Smith of the Iziko South African Museum in Cape Town; and Sébastien Steyer from the National Museum of Natural History in Paris.

The project was also funded by the National Geographic Society, Evolving Earth Foundation, the Grainger Foundation, the Field Museum/IDP Inc. African Partners Program, and the National Research Council of South Africa.

Fish Was On the Menu for Early Flying Dinosaur

Apr. 22, 2013 — University of Alberta-led research reveals that Microraptor, a small flying dinosaur was a complete hunter, able to swoop down and pickup fish as well as its previously known prey of birds and tree dwelling mammals.
U of A paleontology graduate student Scott Persons says new evidence of Microrpator’s hunting ability came from fossilized remains in China. “We were very fortunate that this Microraptor was found in volcanic ash and its stomach content of fish was easily identified.”

Prior to this, paleontologists believed microraptors which were about the size of a modern day hawk, lived in trees where they preyed exclusively on small birds and mammals about the size of squirrels.

“Now we know that Microraptor operated in varied terrain and had a varied diet,” said Persons. “It took advantage of a variety of prey in the wet, forested environment that was China during the early Cretaceous period, 120 million years ago.”

Further analysis of the fossil revealed that its teeth were adapted to catching slippery, wiggling prey like fish. Dinosaur researchers have established that most meat eaters had teeth with serrations on both sides which like a steak knife helped the predator saw through meat.

But the Microraptor’s teeth are serrated on just one side and its teeth are angled forwards.

“Microraptor seems adapted to impale fish on its teeth. With reduced serrations the prey wouldn’t tear itself apart while it struggled,” said Persons. “Microraptor could simply raise its head back, the fish would slip off the teeth and be swallowed whole, no fuss no muss.”

Persons likens the Microraptor’s wing configuration to a bi-plane. “It had long feathers on its forearms, hind legs and tail,” said Persons. “It was capable of short, controlled flights.”

This is the first evidence of a flying raptor, a member of the Dromaeosaur family of dinosaurs to successfully prey on fish.

Dinosaur Egg Study Supports Evolutionary Link Between Birds and Dinosaurs: How Troodon Likely Hatched Its Young

A small, bird-like North American dinosaur incubated its eggs in a similar way to brooding birds — bolstering the evolutionary link between birds and dinosaurs, researchers at the University of Calgary and Montana State University study have found.

Among the many mysteries paleontologists have tried to uncover is how dinosaurs hatched their young. Was it in eggs completely buried in nest materials, like crocodiles? Or was it in eggs in open or non-covered nests, like brooding birds?

Using egg clutches found in Alberta and Montana, researchers Darla Zelenitsky at the University of Calgary and David Varricchio at Montana State University closely examined the shells of fossil eggs from a small meat-eating dinosaur called Troodon.

In a finding published in the spring issue of Paleobiology, they concluded that this specific dinosaur species, which was known to lay its eggs almost vertically, would have only buried the egg bottoms in mud.

“Based on our calculations, the eggshells of Troodon were very similar to those of brooding birds, which tells us that this dinosaur did not completely bury its eggs in nesting materials like crocodiles do,” says study co-author Zelenitsky, assistant professor of geoscience.

“Both the eggs and the surrounding sediments indicate only partial burial; thus an adult would have directly contacted the exposed parts of the eggs during incubation,” says lead author Varricchio, associate professor of paleontology.

Varricchio says while the nesting style for Troodon is unusual, “there are similarities with a peculiar nester among birds called the Egyptian Plover that broods its eggs while they’re partially buried in sandy substrate of the nest.”

Paleontologists have always struggled to answer the question of how dinosaurs incubated their eggs, because of the scarcity of evidence for incubation behaviours.

As dinosaurs’ closest living relatives, crocodiles and birds offer some insights.

Scientists know that crocodiles and birds that completely bury their eggs for hatching have eggs with many pores or holes in the eggshell, to allow for respiration.

This is unlike brooding birds which don’t bury their eggs; consequently, their eggs have far fewer pores.

The researchers counted and measured the pores in the shells of Troodon eggs to assess how water vapour would have been conducted through the shell compared with eggs from contemporary crocodiles, mound-nesting birds and brooding birds.

They are optimistic their methods can be applied to other dinosaur species’ fossil eggs to show how they may have been incubated.

“For now, this particular study helps substantiate that some bird-like nesting behaviors evolved in meat-eating dinosaurs prior to the origin of birds. It also adds to the growing body of evidence that shows a close evolutionary relationship between birds and dinosaurs,” Zelenitsky says.

New Carnivorous Dinosaur from Madagascar Raises More Questions Than It Answers

The first new species of dinosaur from Madagascar in nearly a decade was announced today, filling an important gap in the island’s fossil record.

Dahalokely tokana (pronounced “dah-HAH-loo-KAY-lee too-KAH-nah”) is estimated to have been between nine and 14 feet long, and it lived around 90 million years ago. Dahalokely belongs to a group called abelisauroids, carnivorous dinosaurs common to the southern continents. Up to this point, no dinosaur remains from between 165 and 70 million years ago could be identified to the species level in Madagascar-a 95 million year gap in the fossil record. Dahalokely shortens this gap by 20 million years.

The fossils of Dahalokely were excavated in 2007 and 2010, near the city of Antsiranana (Diego-Suarez) in northernmost Madagascar. Bones recovered included vertebrae and ribs. Because this area of the skeleton is so distinct in some dinosaurs, the research team was able to definitively identify the specimen as a new species. Several unique features — including the shape of some cavities on the side of the vertebrae — were unlike those in any other dinosaur. Other features in the vertebrae identified Dahalokely as an abelisauroid dinosaur.

When Dahalokely was alive, Madagascar was connected to India, and the two landmasses were isolated in the middle of the Indian Ocean. Geological evidence indicates that India and Madagascar separated around 88 million years ago, just after Dahalokely lived. Thus, Dahalokely potentially could have been ancestral to animals that lived later in both Madagascar and India. However, not quite enough of Dahalokely is yet known to resolve this issue. The bones known so far preserve an intriguing mix of features found in dinosaurs from both Madagascar and India.

“We had always suspected that abelisauroids were in Madagascar 90 million years ago, because they were also found in younger rocks on the island. Dahalokely nicely confirms this hypothesis,” said project leader Andrew Farke, Augustyn Family Curator of Paleontology at the Raymond M. Alf Museum of Paleontology. Farke continued, “But, the fossils of Dahalokely are tantalizingly incomplete — there is so much more we want to know. Was Dahalokely closely related to later abelisauroids on Madagascar, or did it die out without descendents?”

The name “Dahalokely tokana” is from the Malagasy language, meaning “lonely small bandit.” This refers to the presumed carnivorous diet of the animal, as well as to the fact that it lived at a time when the landmasses of India and Madagascar together were isolated from the rest of the world.

“This dinosaur was closely related to other famous dinosaurs from the southern continents, like the horned Carnotaurus from Argentina and Majungasaurus, also from Madagascar,” said project member Joe Sertich, Curator of Dinosaurs at the Denver Museum of Nature & Science and the team member who discovered the new dinosaur. “This just reinforces the importance of exploring new areas around the world where undiscovered dinosaur species are still waiting,” added Sertich.

The research was funded by the Jurassic Foundation, Sigma Xi, National Science Foundation, and the Raymond M. Alf Museum of Paleontology. The paper naming Dahalokely appears in the April 18, 2013, release of the journal PLOS ONE.

World’s Oldest Dinosaur Embryo Bonebed Yields Organic Remains

Apr. 10, 2013 — The great age of the embryos is unusual because almost all known dinosaur embryos are from the Cretaceous Period. The Cretaceous ended some 125 million years after the bones at the Lufeng site were buried and fossilized.

Led by University of Toronto Mississauga paleontologist Robert Reisz, an international team of scientists from Canada, Taiwan, the People’s Republic of China, Australia, and Germany excavated and analyzed over 200 bones from individuals at different stages of embryonic development.

“We are opening a new window into the lives of dinosaurs,” says Reisz. “This is the first time we’ve been able to track the growth of embryonic dinosaurs as they developed. Our findings will have a major impact on our understanding of the biology of these animals.”

The bones represent about 20 embryonic individuals of the long-necked sauropodomorph Lufengosaurus, the most common dinosaur in the region during the Early Jurassic period. An adult Lufengosaurus was approximately eight metres long.

The disarticulated bones probably came from several nests containing dinosaurs at various embryonic stages, giving Reisz’s team the rare opportunity to study ongoing growth patterns. Dinosaur embryos are more commonly found in single nests or partial nests, which offer only a snapshot of one developmental stage.

To investigate the dinosaurs’ development, the team concentrated on the largest embryonic bone, the femur. This bone showed a consistently rapid growth rate, doubling in length from 12 to 24 mm as the dinosaurs grew inside their eggs. Reisz says this very fast growth may indicate that sauropodomorphs like Lufengosaurus had a short incubation period.

Reisz’s team found the femurs were being reshaped even as they were in the egg. Examination of the bones’ anatomy and internal structure showed that as they contracted and pulled on the hard bone tissue, the dinosaurs’ muscles played an active role in changing the shape of the developing femur. “This suggests that dinosaurs, like modern birds, moved around inside their eggs,” says Reisz. “It represents the first evidence of such movement in a dinosaur.”

The Taiwanese members of the team also discovered organic material inside the embryonic bones. Using precisely targeted infrared spectroscopy, they conducted chemical analyses of the dinosaur bone and found evidence of what Reisz says may be collagen fibres. Collagen is a protein characteristically found in bone.

“The bones of ancient animals are transformed to rock during the fossilization process,” says Reisz. “To find remnants of proteins in the embryos is really remarkable, particularly since these specimens are over 100 million years older than other fossils containing similar organic material.”

Only about one square metre of the bonebed has been excavated to date, but this small area also yielded pieces of eggshell, the oldest known for any terrestrial vertebrate. Reisz says this is the first time that even fragments of such delicate dinosaur eggshells, less than 100 microns thick, have been found in good condition.

“A find such as the Lufeng bonebed is extraordinarily rare in the fossil record, and is valuable for both its great age and the opportunity it offers to study dinosaur embryology,” says Reisz. “It greatly enhances our knowledge of how these remarkable animals from the beginning of the Age of Dinosaurs grew.”