Australia’s Stampeding Dinosaurs Take a Dip: Largely Tracks of Swimming Rather Than Running Animals
Jan. 8, 2013 — Queensland paleontologists have discovered that the world’s only recorded dinosaur stampede is largely made up of the tracks of swimming rather than running animals.
The University of Queensland’s (UQ) PhD candidate Anthony Romilio led the study of thousands of small dinosaur tracks at Lark Quarry Conservation Park, central-western Queensland.
Mr Romilio says the 95-98 million-year-old tracks are preserved in thin beds of siltstone and sandstone deposited in a shallow river when the area was part of a vast, forested floodplain.
“Many of the tracks are nothing more than elongated grooves, and probably formed when the claws of swimming dinosaurs scratched the river bottom,” Romilio said.
“Some of the more unusual tracks include ‘tippy-toe’ traces — this is where fully buoyed dinosaurs made deep, near vertical scratch marks with their toes as they propelled themselves through the water.
“It’s difficult to see how tracks such as these could have been made by running or walking animals.
“If that was the case we would expect to see a much flatter impression of the foot preserved in the sediment.”
Mr Romilio said that similar looking swim traces made by different sized dinosaurs also indicated fluctuations in the depth of the water.
“The smallest swim traces indicate a minimum water depth of about 14 cm, while much larger ones indicate depths of more than 40 cm,” Mr Romilio said.
“Unless the water level fluctuated, it’s hard to envisage how the different sized swim traces could have been preserved on the one surface.
“Some of the larger tracks are much more consistent with walking animals, and we suspect these dinosaurs were wading through the shallow water.”
Mr Romilio said the swimming dinosaur tracks at Lark Quarry belonged to small, two-legged herbivorous dinosaurs known as ornithopods.
“These were not large dinosaurs,” Mr Romilio said.
“Some of the smaller ones were no larger than chickens, while some of the wading animals were as big as emus.”
The researchers interpreted the large spacing among many consecutive tracks to indicate that the dinosaurs were moving downstream, perhaps using the current of the river to assist their movements.
Given the likely fluctuations in water depth, the researchers assume the tracks were formed over several days, maybe even weeks.
Previous research had identified two types of small dinosaur tracks at Lark Quarry: long-toed tracks (called Skartopus) and short-toed tracks (called Wintonopus).
The UQ scientists found that just like you ‘shouldn’t judge a book by its cover’, you also ‘shouldn’t judge a track by its outline’.
“3D profiles of ‘Skartopus’ tracks reveal that they were made by a short-toed trackmaker dragging its toes through the sediment, thereby elongating the tracks,” explained Romilio.
“In this context, they are best interpreted as a just another variant of Wintonopus.”
Romilio’s supervisor and coauthor of the new paper, Dr Steve Salisbury, added that, “3D analysis of the Lark Quarry tracks has allowed us to greatly refine our understanding of what this site represents.
“It is also allowing us to learn more about how these dinosaurs moved and behaved in different environments,” Dr Salisbury said.
For the past 30 years, the tracks at Lark Quarry have be known as the world’s only record of a ‘dinosaur stampede’.
Previous research by Romilio and Salisbury in 2011 also showed the larger tracks at Lark Quarry were probably made by a herbivorous dinosaur similar to Muttaburrasaurus, and not a large theropod, as had previously been proposed.
“Taken together, these findings strongly suggest Lark Quarry does not represent a ‘dinosaur stampede’,” Romilio said.
“A better analogy for the site is probably a river crossing.”
Dr Salisbury said regardless of how it was interpreted, these findings took nothing away from the importance of the site.
“Lark Quarry is, and will always remain, one of Australia’s most important dinosaur tracksites,” Dr Salisbury said.
The new study was published in the January 2013 issue of Journal of Vertebrate Paleontology.
Giant Fossil Predator Provides Insights Into the Rise of Modern Marine Ecosystem Structures
Jan. 7, 2013 — An international team of scientists has described a fossil marine predator measuring 8.6 meters in length (about 28 feet) recovered from the Nevada desert in 2010 as representing the first top predator in marine food chains feeding on prey similar to its own size.
A paper with their description will appear the week of Jan. 7, 2013 in the early electronic issue of Proceedings of the National Academy of Sciences.
Scientists who studied the fossil include lead author Dr. Nadia Fröbisch and Prof. Jörg Fröbisch (both at Museum für Naturkunde Leibniz-Institut für Evolutions- und Biodiversitätsforschung), Prof. P. Martin Sander (Steinmann Institute of Geology, Mineralogy, and Paleontology, Division of Paleontology, University of Bonn), Prof. Lars Schmitz (W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California) and Dr. Olivier Rieppel (The Field Museum, Chicago, Illinois).
The 244-million-year-old fossil, named Thalattoarchon saurophagis (lizard-eating sovereign of the sea) is an early representative of the ichthyosaurs, a group of marine reptiles that lived at the same time as dinosaurs and roamed the oceans for 160 million years. It had a massive skull and jaws armed with large teeth with cutting edges used to seize and slice through other marine reptiles in the Triassic seas. Because it was a meta-predator, capable of feeding on animals with bodies similar in size to its own, Thalattoarchon was comparable to modern orca whales.
Remarkably, only eight million years prior to the appearance of Thalattoarchon, a severe extinction at the end of the Permian period killed as many as 80 to 96 percent of species in the Earth’s oceans. The rise of a predator such as Thalattoarchon documents the fast recovery and evolution of a modern ecosystem structure after the extinction.
“Everyday we learn more about the biodiversity of our planet including living and fossil species and their ecosystems” Dr. Fröbisch said. “The new find characterizes the establishment of a new and more advanced level of ecosystem structure. Findings like Thalattoarchon help us to understand the dynamics of our evolving planet and ultimately the impact humans have on today’s environment.”
“This discovery is a good example of how we study the past in order to illuminate the future,” said Dr. Rieppel of The Field Museum.
The ichthyosaur was recovered from what is today a remote mountain range in central Nevada. Most of the animal was preserved, including the skull (except the front of the snout), parts of the fins, and the complete vertebral column up to the tip of the tail. Supported by a grant from the National Geographic Society’s Committee for Research and Exploration, the team of paleontologists took three weeks to unearth the ichthyosaur and prepare it for its transport by helicopter and truck out of the field.
New Study Sheds Light On Dinosaur Size
Dec. 19, 2012 — Dinosaurs were not only the largest animals to roam the Earth — they also had a greater number of larger species compared to all other back-boned animals — scientists suggest in a new paper published in the journal PLOS ONE.
The researchers, from Queen Mary, University of London, compared the size of the femur bone of 329 different dinosaur species from fossil records. The length and weight of the femur bone is a recognised method in palaeontology for estimating a dinosaur’s body mass.
They found that dinosaurs follow the opposite pattern of body size distribution as seen in other vertebrate species. For example, within living mammals there tends to be few larger species, such as elephants, compared to smaller animals, such as mice, which have many species. The evidence from fossil records implies that in contrast there were many species of larger dinosaurs and few small species.
Dr David Hone from Queen Mary’s School of Biological and Chemical Sciences, explains: “What is remarkable is that this tendency to have more species at a bigger size seemed to evolve quite early on in dinosaurian evolution around the Late Triassic period, 225 million years ago, raising questions about why they got to be so big.
“Our evidence supports the hypothesis that young dinosaurs occupied a different ecological niche to their parents so they weren’t in competition for the same sources of food as they ate smaller plants or preyed on smaller size animals. In fact, we see modern crocodiles following this pattern — baby crocodiles start by feeding off insects and tadpoles before graduating onto fish and then larger mammals.”
Dr Eoin Gorman, also from Queen Mary’s School of Biological and Chemical Sciences added: “There is growing evidence that dinosaurs produced a large number of offspring, which were immediately vulnerable to predation due to their smaller size. It was beneficial for the herbivores to grow to large size as rapidly as possible to escape this threat, but the carnivores had sufficient resources to live optimally at smaller sizes.
“These differences are reflected in our analyses and also offer an explanation why other groups do not follow a similar pattern. Several modern-day vertebrate groups are almost entirely carnivorous, while many of the herbivores are warm-blooded, which limits their size.”
New Dinosaur: First Freshwater Mosasaur Discovered
Dec. 19, 2012 — A new mosasaur species discovered in Hungary is the first known example of this group of scaled reptiles to have lived in freshwater river environments similar to modern freshwater dolphins.
The research is published Dec. 19 in the open-access journal PLOS ONE by Laszlo Makadi from the Hungarian Natural History Museum, Hungary and colleagues from the University of Alberta, Canada and MTA-ELTE Lendület Dinosaur Research Group, Hungary.
The species lived about 84 million years ago, the largest specimens reached about 20 feet in length, and belongs to a family called ‘mosasaurs’, conventionally thought of as gigantic finned marine lizards, similar and perhaps even related to present day monitor lizards. The researchers discovered several fossils of the new species, ranging from small juveniles to large adults that suggest that this species had limbs like a terrestrial lizard, a flattened, crocodile-like skull, and a tail unlike other known members of the mosasaur family.
The fossils were recovered from an open-pit mine in the Bakony Hills of Western Hungary, which were once flood-plains. According to the study, this is the first known mosasaur that lived in freshwater, and only the second specimen of a mosasaur to have been found in rocks that were not once deposited in the ocean. Makadi says, “The evidence we provide here makes it clear that similar to some lineages of cetaceans, mosasaurs quickly adapted to a variety of aquatic environments, with some groups re- invading available niches in freshwater habitats. The size of Pannoniasaurus makes it the largest known predator in the waters of this paleo-environment.”
Even in the modern world, scaly reptiles in the aquatic world are extremely rare. Only a few species live in the water, and even fewer, like marine iguanas and sea kraits, live in the oceans. The new species described here probably adapted to freshwater environments similarly to river dolphins, such as those now inhabiting the Amazon, Ganges and Yangtze rivers.
Asteroid That Killed the Dinosaurs Also Wiped out the ‘Obamadon’
Dec. 10, 2012 — The asteroid collision widely thought to have killed the dinosaurs also led to extreme devastation among snake and lizard species, according to new research — including the extinction of a newly identified lizard Yale and Harvard scientists have named Obamadon gracilis.
“The asteroid event is typically thought of as affecting the dinosaurs primarily,” said Nicholas R. Longrich, a postdoctoral associate with Yale’s Department of Geology and Geophysics and lead author of the study. “But it basically cut this broad swath across the entire ecosystem, taking out everything. Snakes and lizards were hit extremely hard.”
The study was scheduled for online publication the week of Dec. 10 in the Proceedings of the National Academy of Sciences.
Earlier studies have suggested that some snake and lizard species (as well as many mammals, birds, insects and plants) became extinct after the asteroid struck Earth 65.5 million years ago, on the edge of the Yucatan Peninsula. But the new research argues that the collision’s consequences were far more serious for snakes and lizards than previously understood. As many as 83 percent of all snake and lizard species died off, the researchers said — and the bigger the creature, the more likely it was to become extinct, with no species larger than one pound surviving.
The results are based on a detailed examination of previously collected snake and lizard fossils covering a territory in western North America stretching from New Mexico in the southwestern United States to Alberta, Canada. The authors examined 21 previously known species and also identified nine new lizards and snakes.
They found that a remarkable range of reptile species lived in the last days of the dinosaurs. Some were tiny lizards. One snake was the size of a boa constrictor, large enough to take the eggs and young of many dinosaur species. Iguana-like plant-eating lizards inhabited the southwest, while carnivorous lizards hunted through the swamps and flood plains of what is now Montana, some of them up to six feet long.
“Lizards and snakes rivaled the dinosaurs in terms of diversity, making it just as much an ‘Age of Lizards’ as an ‘Age of Dinosaurs,'” Longrich said.
The scientists then conducted a detailed analysis of the relationships of these reptiles, showing that many represented archaic lizard and snake families that disappeared at the end of the Cretaceous, following the asteroid strike.
One of the most diverse lizard branches wiped out was the Polyglyphanodontia. This broad category of lizards included up to 40 percent of all lizards then living in North America, according to the researchers. In reassessing previously collected fossils, they came across an unnamed species and called it Obamadon gracilis. In Latin, odon means “tooth” and gracilis means “slender.”
“It is a small polyglyphanodontian distinguished by tall, slender teeth with large central cusps separated from small accessory cusps by lingual grooves,” the researchers write of Obamadon, which is known primarily from the jaw bones of two specimens. Longrich said the creature likely measured less than one foot long and probably ate insects.
He said no one should impute any political significance to the decision to name the extinct lizard after the recently re-elected U.S. president: “We’re just having fun with taxonomy.”
The mass (but not total) extinction of snakes and lizards paved the way for the evolution and diversification of the survivors by eliminating competitors, the researchers said. There are about 9,000 species of lizard and snake alive today. “They didn’t win because they were better adapted, they basically won by default, because all their competitors were eliminated,” Longrich said.
Co-author Bhart-Anjan S. Bhullar, a doctoral student in organismic and evolutionary biology at Harvard University, said: “One of the most important innovations in this work is that we were able to precisely reconstruct the relationships of extinct reptiles from very fragmentary jaw material. This had tacitly been thought impossible for creatures other than mammals. Our study then becomes the pilot for a wave of inquiry using neglected fossils and underscores the importance of museums like the Yale Peabody as archives of primary data on evolution — data that yield richer insights with each new era of scientific investigation.”
Jacques A. Gauthier, professor of geology and geophysics at Yale and curator of vertebrate paleontology and vertebrate zoology, is also an author.
The paper is titled “Mass Extinction of Lizards and Snakes at the Cretaceous-Paleogene Boundary.” The National Science Foundation and the Yale Institute for Biospheric Studies supported the research.
Scientists Find Oldest Dinosaur — Or Closest Relative Yet
ScienceDaily (Dec. 4, 2012) — Researchers have discovered what may be the earliest dinosaur, a creature the size of a Labrador retriever, but with a five foot-long tail, that walked the Earth about 10 million years before more familiar dinosaurs like the small, swift-footed Eoraptor and Herrerasaurus.
The findings mean that the dinosaur lineage appeared 10 million to 15 million years earlier than fossils previously showed, originating in the Middle Triassic rather than in the Late Triassic period.
“If the newly named Nyasasaurus parringtoni is not the earliest dinosaur, then it is the closest relative found so far,” according to Sterling Nesbitt, a University of Washington postdoctoral researcher in biology and lead author of a paper published online Dec. 5 in Biology Letters, a journal of the United Kingdom’s Royal Society.
“For 150 years, people have been suggesting that there should be Middle Triassic dinosaurs, but all the evidence is ambiguous,” he said. “Some scientists used fossilized footprints, but we now know that other animals from that time have a very similar foot. Other scientists pointed to a single dinosaur-like characteristic in a single bone, but that can be misleading because some characteristics evolved in a number of reptile groups and are not a result of a shared ancestry.”
The researchers had one humerus — or upper arm bone — and six vertebrae to work with. They determined that the animal likely stood upright, measured 7 to 10 feet in length (2 to 3 meters), was as tall as 3 feet at the hip (1 meter) and may have weighed between 45 and 135 pounds (20 to 60 kilograms).
The fossilized bones were collected in the 1930s from Tanzania, but it may not be correct to say dinosaurs originated in that country. When Nyasasaurus parringtoni lived, the world’s continents were joined in the landmass called Pangaea. Tanzania would have been part of Southern Pangaea that included Africa, South America, Antarctica and Australia.
“The new findings place the early evolution of dinosaurs and dinosaur-like reptiles firmly in the southern continents,” said co-author Paul Barrett at the Natural History Museum, London.
The bones of the new animal reveal a number of characteristics common to early dinosaurs and their close relatives. For example, the bone tissues in the upper arm bone appear as if they are woven haphazardly and not laid down in an organized way. This indicates rapid growth, a common feature of dinosaurs and their close relatives.
“We can tell from the bone tissues that Nyasasaurus had a lot of bone cells and blood vessels,” said co-author Sarah Werning at the University of California, Berkeley, who did the bone analysis. “In living animals, we only see this many bone cells and blood vessels in animals that grow quickly, like some mammals or birds.”
“The bone tissue of Nyasasaurus is exactly what we would expect for an animal at this position on the dinosaur family tree,” she added. “It’s a very good example of a transitional fossil; the bone tissue shows that Nyasasaurus grew about as fast as other primitive dinosaurs, but not as fast as later ones.”
Another example is the upper arm bone’s distinctively enlarged crest, needed to anchor the upper arm muscles. The feature, known as an elongated deltopectoral crest, is also common to all early dinosaurs.
“Nyasasaurus and its age have important implications regardless of whether this taxon is a dinosaur or the closest relatives of dinosaurs,” Nesbitt said. “It establishes that dinosaurs likely evolved earlier than previously expected and refutes the idea that dinosaur diversity burst onto the scene in the Late Triassic, a burst of diversification unseen in any other groups at that time.”
It now appears that dinosaurs were just part of a large diversification of archosaurs. Archosaurs were among the dominant land animals during the Triassic period 250 million to 200 million years ago and include dinosaurs, crocodiles and their kin.
“Dinosaurs are just part of this archosaur diversification, an explosion of new forms soon after the Permian extinction,” Nesbitt said.
The specimen used to identify the new species is part of the collection at the Natural History Museum, London. Four vertebrae from a second specimen of Nyasasaurus, which were also used in this research, are housed in the South African Museum in Cape Town. The work was funded by the National Science Foundation and the Natural History Museum, London. The fourth co-author on the paper is Christian Sidor, UW professor of biology.
The name Nyasasaurus parringtoni is new, but “Nyasasaurus” — combining the lake name Nyasa with the term “saurus” for lizard — is not. The late paleontologist Alan Charig, included as a co-author on the paper, named the specimen but never documented or published in a way that was formally recognized. “Parringtoni” is in honor of University of Cambridge’s Rex Parrington, who collected the specimens in the 1930s.
“What’s really neat about this specimen is that it has a lot of history. Found in the ’30s, first described in the 1950s but never published, then its name pops up but is never validated. Now 80 years later, we’re putting it all together,” Nesbitt said.
“This work highlights the important role of museums in housing specimens whose scientific importance might be overlooked unless studied and restudied in detail,” Barrett said. “Many of the more important discoveries in paleontology are made in the lab, or museum storerooms, as well as in the field.”
Newly Discovered Dinosaur Implies Greater Prevalence of Feathers; Megalosaur Fossil Represents First Feathered Dinosaur Not Closely Related to Birds
ScienceDaily (July 2, 2012) — A new species of feathered dinosaur discovered in southern Germany is further changing the perception of how predatory dinosaurs looked. The fossil of Sciurumimus albersdoerferi,which lived about 150 million years ago, provides the first evidence of feathered theropod dinosaurs that are not closely related to birds.
The fossil is described in a paper published in the Proceedings of the National Academy of Sciences on July 2.
“This is a surprising find from the cradle of feathered dinosaur work, the very formation where the first feathered dinosaur Archaeopteryx was collected over 150 years ago,” said Mark Norell, chair of the Division of Palaeontology at the American Museum of Natural History and an author on the new paper along with researchers from Bayerische Staatssammlung für Paläontologie und Geologie and the Ludwig Maximilians University.
Theropods are bipedal, mostly carnivorous dinosaurs. In recent years, scientists have discovered that many extinct theropods had feathers. But this feathering has only been found in theropods that are classified as coelurosaurs, a diverse group including animals likeT. rexand birds. Sciurumimus — identified as a megalosaur, nota coelurosaur — is the first exception to this rule. The new species also sits deep within the evolutionary tree of theropods, much more so than coelurosaurs, meaning that the species that stem from Sciurumimus are likely to have similar characteristics.
“All of the feathered predatory dinosaurs known so far represent close relatives of birds,” said palaeontologist Oliver Rauhut, of the Bayerische Staatssammlung für Paläontologie und Geologie. “Sciurumimus is much more basal within the dinosaur family tree and thus indicates that all predatory dinosaurs had feathers.”
The fossil, which is of a baby Sciurumimus, was found in the limestones of northern Bavaria and preserves remains of a filamentous plumage, indicating that the whole body was covered with feathers. The genus name ofSciurumimus albersdoerferirefers to the scientific name of the tree squirrels,Sciurus, and means “squirrel-mimic”-referring to the especially bushy tail of the animal. The species name honours the private collector who made the specimen available for scientific study.
“Under ultraviolet light, remains of the skin and feathers show up as luminous patches around the skeleton,” said co-author Helmut Tischlinger, from the Jura Museum Eichstatt.
Sciurumimusis not only remarkable for its feathers. The skeleton, which represents the most complete predatory dinosaur ever found in Europe, allows a rare glimpse at a young dinosaur. Apart from other known juvenile features, such as large eyes, the new find also confirmed other hypotheses.
“It has been suggested for some time that the lifestyle of predatory dinosaurs changed considerably during their growth,” Rauhut said. “Sciurumimus shows a remarkable difference to adult megalosaurs in the dentition, which clearly indicates that it had a different diet.”
Adult megalosaurs reached about 20 feet in length and often weighed more than a ton. They were active predators, which probably also hunted other large dinosaurs. The juvenile specimen of Sciurumimus, which was only about 28 inches in length, probably hunted insects and other small prey, as evidenced by the slender, pointed teeth in the tip of the jaws.
“Everything we find these days shows just how deep in the family tree many characteristics of modern birds go, and just how bird-like these animals were,” Norell said. “At this point it will surprise no one if feather like structures were present in the ancestors of all dinosaurs.
Feathered Saurians: Downy Dinosaur Discovered
ScienceDaily (July 3, 2012) — The new fossil find from the chalk beds of the Franconian Jura evokes associations with a pet cemetery, for the young predatory dinosaur reveals clear traces of fluffy plumage. It also poses an intriguing question: Were all dinosaurs dressed in down?
The fossil of the fledgling saurian, probably newly hatched when it met its end, is remarkable in many ways. First of all, juveniles are extremely rare in the dinosaur fossil record, so every new discovery provides insights into dinosaur nurseries. Moreover, this specimen is perhaps the best-preserved predatory dinosaur that has yet been found in Europe. And Sciurimimus albersdoerferi, which lived during the Jurassic Period some 150 million years ago, displays one very striking feature — its whole body must have been covered with a thick plumage of feathers.
All the feathered dinosaurs so far described belonged to the lineage that gave rise to modern birds. “However, Sciurumimus belongs to a much older branch of the family tree of predatory dinosaurs,” says LMU paleontologist Dr. Oliver Rauhut, who is also affiliated with the Bavarian State Collection for Paleontology and Geology, and led the investigation into the structure and affinities of the sensational new find. “Its plumage may be telling us that all predatory dinosaurs had feathers.”
Were all dinos decked out with feathers?
Several fossil finds have revealed that the pterosaurs — which were capable of flight and are the closest relatives of the dinosaurs — bore hair-like plumage on their bodies. Their fluffy coats resemble the downy feathers that can be recognized in the new fossil. This observation is very significant, as it suggests to the researchers that not just the pterosaurs and the predatory dinosaurs, but all dinosaurs may have had feathers. “If that is the case, we must abandon all our notions about giant reptiles encased in tough scales,” Rauhut says.
As the German-American research team led by Rauhut has been able to show, the new specimen represents a young megalosaur. The genus name Sciurumimus means “squirrel-like” and refers to the animal’s bushy tail, while the species designation albersdoerferi honors the private collector who made the fossil available for scientific study. “When the skeleton was irradiated with UV light, we were able to discern fragments of the skin and the plumage as fluorescent spots and filaments,” says co-author Dr. Helmut Tischlinger.
Cute little dino kids The juvenile Sciurumimus tells us even more. For instance, as in the case of other dinosaurs, its eyes were proportionately much larger than those of adult animals. In other words, young dinosaurs conformed to the “babyface” model. Secondly, it has long been suspected that not just the form of a dinosaur’s face, but also its whole mode of life, was subject to change during lifetime. “And indeed, this individual has a very different set of teeth from those found in adult megalosaurs,” says Rauhut. “That enables us to conclude that their diets also changed as they got older.”
The young Sciurumimus, with its slender, pointed teeth probably preyed on insects and small animals. Fully grown megalosaurs, on the other hand, often exceeded 6 m in length and may have weighed more than a ton, and could give other large dinosaurs a good run for their money. That may also be true of the new species. “We know that dinosaurs were able to grow at terrific rates; diminutive hatchlings could reach adult lengths of several meters,” Rauhut points out. “And even if they might have looked fluffy, they were certainly among the top predators in the food chain.”
The study was financially supported by the Volkswagen Foundation and the American Museum of Natural History
Earliest Record of Mating Fossil Vertebrates: Nine Pairs of Fossilized Turtles Died While Mating 47 Million Years Ago
ScienceDaily (June 20, 2012) — The fossil record consists mostly of the fragmentary remains of ancient animals and plants. But some finds can provide spectacular insights into the life and environment of ancient organisms. The Messel Fossil Pit, a UNESCO world heritage site south of Frankfurt in western Germany, is well known for yielding fossils of unusual quality, including early horses complete with embryos and insects and birds with fossilized colors.
In the latest edition of Biology Letters, a group of scientists lead by Dr. Walter Joyce of the University of Tübingen announces the discovery at Messel of nine pairs of fossilized turtles that perished in the act of mating. Dr. Joyce, a geoscientist from the University of Tübingen, heads the discovery team which includes researchers from the Senckenberg Research Institute Frankfurt and the Hessische Landesmuseum Darmstadt.
“Scientists have collected tens of thousands of fossils at this site in recent decades,” notes co-author Dr. Stephan Schaal of the Senckenberg Naturmuseum in Frankfurt, “but only these turtles are known to occur in pairs, a total of nine so far.” Detailed analysis of the fossil material revealed that each pair consists of a female and male individual. More importantly, even though the males typically face away from the females, the tail of some male individuals can be found wrapped under the shell of the female. “There is no doubt in my mind,” says Dr. Joyce, “These animals died some 47 million years ago in the act of mating. No other vertebrates are known to have died during this important biological process and then been fossilized.”
Most scientists agree that the Messel Pit Fossil Site originated as a deep volcanic crater lake that preserved animals and plants that sank to its bottom, but some questions remain, such as whether the lake had poisonous surface or only subsurface waters. Modern relatives of the fossil turtles found at Messel have permeable skin that allows them to breathe and stay under water for a long time. However, this adaptation can become lethal if these turtles enter poisonous waters. The very fact that turtles were seeking to reproduce at Messel reveals that the surface waters of the volcanic lake supported a thriving biotope. Numerous turtles apparently died, however, when they accidentally sank into poisonous sub-surface waters while mating.
Were Dinosaurs Undergoing Long-Term Decline Before Mass Extinction?
ScienceDaily (May 1, 2012) — Despite years of intensive research about the extinction of non-avian dinosaurs about 65.5 million years ago, a fundamental question remains: were dinosaurs already undergoing a long-term decline before an asteroid hit at the end of the Cretaceous? A study led by scientists at the American Museum of Natural History gives a multifaceted answer.
The findings, published online May 1 in Nature Communications, suggest that in general, large-bodied, “bulk-feeding” herbivores were declining during the last 12 million years of the Cretaceous. But carnivorous dinosaurs and mid-sized herbivores were not. In some cases, geographic location might have been a factor in the animals’ biological success.
“Few issues in the history of paleontology have fueled as much research and popular fascination as the extinction of non-avian dinosaurs,” said lead author Steve Brusatte, a Columbia University graduate student affiliated with the Museum’s Division of Paleontology. “Did sudden volcanic eruptions or an asteroid impact strike down dinosaurs during their prime? We found that it was probably much more complex than that, and maybe not the sudden catastrophe that is often portrayed.”
The research team, which includes Brusatte; Mark Norell, chair of the Museum’s Division of Paleontology; and scientists Richard Butler of Ludwig Maximilian University of Munich and Albert Prieto-M‡rquez from the Bavarian State Collection for Palaeontology, both in Germany, is the first to look at dinosaur extinction based on “morphological disparity”-the variability of body structure within particular groups of dinosaurs. Previous research was based almost exclusively on estimates of changes in the number of dinosaur species over time. However, it can be very difficult to do this accurately.
“By looking just at trends in taxonomic diversity, you get conflicting answers about the state of dinosaurs prior to extinction,” Brusatte said. “This is because the results can be biased by uneven sampling of the fossil record. In places where more rock and fossils were formed, like in America’s Great Plains, you’ll find more species. We wanted to go beyond a simple species count for this study.”
By looking at the change in biodiversity within a given dinosaur group over time, researchers can create a rough snapshot of the animals’ overall well-being. This is because groups that show an increase in variability might have been evolving into more species, giving them an ecological edge. On the other hand, decreasing variability might be a warning sign of extinction in the long term.
The researchers calculated morphological disparity for seven major dinosaur groups using databases that include wide-ranging characteristics about the intricate skeletal structure of nearly 150 different species.
“People often think of dinosaurs as being monolithic-we say ‘The dinosaurs did this, and the dinosaurs did that,'” Butler said. “But dinosaurs were hugely diverse. There were hundreds of species living in the Late Cretaceous, and these differed enormously in diet, shape, and size. Different groups were probably evolving in different ways and the results of our study show that very clearly.”
The researchers found that hadrosaurs and ceratopsids, two groups of large-bodied, bulk-feeding herbivores-animals that did not feed selectively-may have experienced a decline in biodiversity in the 12 million years before the dinosaurs ultimately went extinct. In contrast, small herbivores (ankylosaurs and pachycephalosaurs), carnivorous dinosaurs (tyrannosaurs and coelurosaurs), and enormous herbivores without advanced chewing abilities (sauropods) remained relatively stable or even slightly increased in biodiversity.
As a complication, hadrosaurs showed different levels of disparity in different locations. While declining in North America, the disparity of this dinosaur group seems to have been increasing in Asia during the latest Cretaceous.
“These disparity calculations paint a more nuanced picture of the final 12 million years of dinosaur history,” Brusatte said. “Contrary to how things are often perceived, the Late Cretaceous wasn’t a static ‘lost world’ that was violently interrupted by an asteroid impact. Some dinosaurs were undergoing dramatic changes during this time, and the large herbivores seem to have been mired in a long-term decline, at least in North America.”
In North America, extreme fluctuations of the inland Western Interior Sea and mountain building might have affected the evolution of dinosaurs in distinct ways from species on other continents. Therefore, the authors say, the North American record might not be representative of a global pattern, if one exists. They also note that there is no way to tell whether a declining dinosaur group would have survived if the asteroid had not struck Earth.
“Even if the disparity of some dinosaur clades or regional faunas were in decline, this does not automatically mean that dinosaurs were doomed to extinction,” Norell said. “Dinosaur diversity fluctuated throughout the Mesozoic, and small increases or decreases between two or three time intervals may not be noteworthy within the context of the entire 150-million-year history of the group.”
Funding for this study was provided by the National Science Foundation through the Division of Earth Sciences, the Division of Biological Infrastructure, a Graduate Research Fellowship, and a Doctoral Dissertation Improvement Grant; the German Research Foundation’s Emmy Noether Programme; the Alexander von Humboldt Foundation; the Charlotte and Walter Kohler Charitable Trust; the American Museum of Natural History; and Columbia University.