First discovery of dinosaur fossils in Malaysia

A team of palaeontology researchers from the Department of Geology, Faculty of Science, University of Malaya and Japanese universities (Waseda University and Kumamoto University) has found dinosaur fossil teeth in the rural interiors of Pahang — the first known discovery of dinosaur remains in Malaysia.

We have started our collaboration and carried out field expeditions to search for potential dinosaur deposits in Malaysia since Sep. 2012. Recently, we have successfully confirmed the presence of dinosaur remains (fossilised teeth) in Pahang,” said lead researcher, Dr. Masatoshi Sone.

“Acting as a team leader, and one of the collaborators, Professor Ren Hirayama from Waseda University (Tokyo), a specialist in reptile palaeontology, identified that one of the teeth, Sample UM10575, belongs to a spinosaurid dinosaur (known as a carnivorous “fish-eating” dinosaur),” he added.

UM10575 is about 23mm long and 10mm wide. It develops fairly distinct carinae (front and rear edges) with serrations, typical to a tooth of a theropod (carnivorous dinosaur). Well-marked coarse ridges are developed on the surface of the tooth, and the surface bears micro-ornament (very fine sculptures); these characterise a spinosaurid tooth.

The new fossils were found from sedimentary rock strata of late Mesozoic age, most likely Cretaceous (ca. 145-75 million years ago). In the interior of Peninsular Malaysia, Jurassic¬-Cretaceous sediments are known to be widely distributed, so that the team researchers have targeted a potential dinosaur deposit there since.

It is expected that large deposits of dinosaur fossils still remain in Malaysia. We currently continue further research and hope to conduct more extensive field investigations that may disclose more significant finds.

Alongside making the public announcement of this discovery, it is urgent to take measures for the protection and conservation of the present fossil site (and to make it accessible only to the qualified researchers). Since the site is in the open area, it is concerned that, once the public is aware, some destruction due to lawless excavations by private fossil collectors and/or robbers may happen, as has happened, for example, in Thailand, Laos, and Mongolia.

It is also hoped that the current discovery can lead to development of palaeontology study in the country and to eventually establish a Malaysian dinosaur museum in a near future.

Chronology of geological events prior to the great extinction 66 million years ago

Research at the Faculty of Science and Technology of the University of the Basque Country (UPV/EHU), entitled ‘Detailed Correlation and Orbital Control of succession during the Upper Maastrichtian in the Basque-Cantabrian Basin’ and focusing on the last 3 million years of the Cretaceous period, managed to detail exactly the chronology of the climatic, magnetic and biological events prior to the great extinction of 66 million years ago (Ma.), which includes the disappearance of almost all dinosaurs (except birds).

The traditional method for establishing absolute chronological and geological events has been using radiometric dating methods, based on the decomposition of radioactive isotopes. This method, however, is only applicable with the intervals such isotopes have, so the ages of certain zones can only be estimated through interpolation.

As the title of the research suggests, the method applied by this research team was based on a different principle, concretely on what is known as orbital control, which analyses gravitational interactions between the Earth, the Moon, the Sun and the planets of the Solar System (principally Jupiter). These interactions produce periodic variations of the terrestrial orbit, known as Milankovitch cycles, in honour of the Serbian astrophysicist who discovered them. It is thus known that the terrestrial orbit varies with intervals of one hundred thousand and four hundred thousand years; the inclination or obliquity of Earth’s axis every forty thousand years; and the orientation of this axis in relation to the sun approximately every twenty thousand years.

“It has been shown that such orbital variations influence, to a greater or lesser degree, the Earth’s climate, due mainly to differences in solar radiation received by the planet. The variations of the terrestrial orbit, for example, also controlled the duration of the glacial periods during the Quaternary (from 2.6 Ma until today),” explained Victoriano Pujalte, Professor of Geology of the Faculty of Science and Technology at the UPV/EHU and co-author of the research.

Sopelana, Zumaia and Hendaia

The research focused on locating the effects that these astronomical cycles have had on the layers analysed, a Flysch-type succession (rock sequences of a sedimentary origin made up of alternating layers of hard calcareous rock with other, softer loams) accumulated on a deep-lying sea basin — the Basque Basin — between 69 and 66 Ma, and which today is exposed to the naked eye in cliffs at Sopelana (Bizkaia province), Zumaia (province of Gipuzkoa) and Hendaia (Lapurdi). Using the “Fourier analysis” (a mathematical tool to analyse periodic functions), it has been possible to identify cycles of 400,000, 100,000 and 20,000 years, represented “by successive alternations of a loamy layer and another calcareous one,” known as “pairs,” of which 125 have been identified and enumerated. This has enabled narrowing the layers of the emerging successions to stages of twenty thousand years. “On a human scale twenty thousand years may seem a long time. On a geological scale, however, it represents spectacular precision,” explained Mr. Pujalte.

Geology is a “historical science” and, as such, any advance enabling greater precision in the chronology of events represents significant progress. “This is what the purpose of our work has been: to establish the chronology, approximately, of the past three million years of this Cretaceous period, and which in future research will enable establishing the geological and oceanographic phenomena of such an interval with precision,” pointed out the Professor of Geology at the UPV/EHU Faculty of Science and Technology.

Ancient reptile birth preserved in fossil: Ichthyosaur fossil may show oldest live reptilian birth

An ichthyosaur fossil may show the earliest live birth from an ancient Mesozoic marine reptile, according to a study published February 12, 2014 in PLOS ONE by Ryosuke Motani from the University of California, Davis, and colleagues.

Ichthyosaurs were giant marine reptiles that evolved from land reptiles and moved to the water. Scientists report a new fossil specimen that belongs to Chaohusaurus (Reptilia, Ichthyopterygia), the oldest of Mesozoic marine reptiles that lived approximately 248 million years ago. The partial skeleton was recovered in China and may show a live birth. The maternal skeleton was associated with three embryos and neonates: one inside the mother, another exiting the pelvis-with half the body still inside the mother-and the third outside of the mother. The headfirst birth posture of the second embryo indicates that live births in ichthyosaurs may have taken place on land, instead of in the water, as some studies have previously suggested.

The new specimen may contain the oldest fossil embryos of Mesozoic marine reptile, about 10 million years older than those indicated on previous records. The authors also suggest that live births in land reptiles may have appeared much earlier than previously thought.

Dr. Motani added, “The study reports the oldest vertebrate fossil to capture the ‘moment’ of live-birth, with a baby emerging from the pelvis of its mother. The 248-million-year old fossil of an ichthyosaur suggests that live-bearing evolved on land and not in the sea.”

Revision to rules for color in dinosaurs suggests connection between color and physiology

New research that revises the rules allowing scientists to decipher color in dinosaurs may also provide a tool for understanding the evolutionary emergence of flight and changes in dinosaur physiology prior to its origin.

In a survey comparing the hair, skin, fuzz and feathers of living terrestrial vertebrates and fossil specimens, a research team from The University of Texas at Austin, the University of Akron, the China University of Geosciences and four other Chinese institutions found evidence for evolutionary shifts in the rules that govern the relationship between color and the shape of pigment-containing organelles known as melanosomes, as reported in the Feb. 13 edition of Nature.

At the same time, the team unexpectedly discovered that ancient maniraptoran dinosaurs, paravians, and living mammals and birds uniquely shared the evolutionary development of diverse melanosome shapes and sizes. (Diversity in the shape and size of melanosomes allows scientists to decipher color.) The evolution of diverse melanosomes in these organisms raises the possibility that melanosome shape and size could yield insights into dinosaur physiology.

Melanosomes have been at the center of recent research that has led scientists to suggest the colors of ancient fossil specimens covered in fuzz or feathers.

Melanosomes contain melanin, the most common light-absorbing pigment found in animals. Examining the shape of melanosomes from fossil specimens, scientists have recently suggested the color of several ancient species, including the fuzzy first-discovered feathered dinosaur Sinosauropteryx, and feathered species like Microraptor and Anchiornis.

According to the new research, color-decoding works well for some species, but the color of others may be trickier than thought to reconstruct.

Comparing melanosomes of 181 extant specimens, 13 fossil specimens and all previously published data on melanosome diversity, the researchers found that living turtles, lizards and crocodiles, which are ectothermic (commonly known as cold-blooded), show much less diversity in the shape of melanosomes than birds and mammals, which are endothermic (warm-blooded, with higher metabolic rates).

The limited diversity in melanosome shape among living ectotherms shows little correlation to color. The same holds true for fossil archosaur specimens with fuzzy coverings scientists have described as “protofeathers” or “pycnofibers.” In these specimens, melanosome shape is restricted to spherical forms like those in modern reptiles, throwing doubt on the ability to decipher the color of these specimens from fossil melanosomes.

In contrast, in the dinosaur lineage leading to birds, the researchers found an explosion in the diversity of melanosome shape and size that appears to correlate to an explosion of color within these groups. The shift in diversity took place abruptly, near the origin of pinnate feathers in maniraptoran dinosaurs.

“This points to a profound change at a pretty discrete point,” says author Julia Clarke of The University of Texas at Austin’s Jackson School of Geosciences. “We’re seeing an explosion of melanosome diversity right before the origin of flight associated with the origin of feathers.”

What surprised the researchers was a similarity in the pattern of melanosome diversity among ancient maniraptoran dinosaurs, paravians, and living mammals and birds.

“Only in living, warm-blooded vertebrates that independently evolved higher metabolic rates do we see the melanosome diversity we also see in feathered dinosaurs,” said co-author Matthew Shawkey of The University of Akron.

Many of the genes involved in the melanin color system are also involved in other core processes such as food intake, the stress axis, and reproductive behaviors. Because of this, note the researchers, it is possible that the evolution of diverse melanosome shapes is linked to larger changes in energetics and physiology.

Melanosome shape could end up offering a new tool for studying endothermy in fossil specimens, a notoriously challenging subject for paleontologists.

Because the explosion of diversity in melanosomes appears to have taken place right at the origin of pinnate feathers, the change may indicate that a key shift in dinosaurian physiology occurred prior to the origin of flight.

“We are far from understanding the exact nature of the shift that may have occurred,” says Clarke. “But if changes in genes involved in both coloration and other aspects of physiology explain the pattern we see, these precede flight and arise close to the origin of feathers.”

It is possible, notes Clarke, that a diversity in melanosome shape (and correlated color changes) resulted from an increased evolutionary role for signaling and sexual selection that had a carryover effect on physiology, or that a change in physiology closely preceded changes in color patterning. At this point, she stresses, both ideas are speculative.

“What is interesting is that trying to get at color in extinct animals may have just started to give us some insights into changes in the physiology of dinosaurs.”


Fossils abound: ‘Epic’ new Burgess Shale site in Canada’s Kootenay National Park

Yoho National Park’s 505-million-year-old Burgess Shale — home to some of the planet’s earliest animals, including a very primitive human relative — is one of the world’s most important fossil sites. Now, more than a century after its discovery, a compelling sequel has been unearthed: 42 kilometres away in Kootenay National Park, a new Burgess Shale fossil bed has been located that appears to equal the importance of the original discovery, and may one day even surpass it.

A paper published today in the scientific journal Nature Communications describes Kootenay National Park’s new ‘Marble Canyon’ fossil beds for the first time. The authors suggest that the area and its extraordinary fossils will greatly further our understanding of the sudden explosion of animal life during the Cambrian Period.

The find was made in the summer of 2012 by a team from the Royal Ontario Museum (ROM, Jean-Bernard Caron), Pomona College (Robert Gaines), the University of Toronto (Jean-Bernard Caron, Cédric Aria), the University of Saskatchewan (Gabriela Mángano) and Uppsala University (Michael Streng).

“This new discovery is an epic sequel to a research story that began at the turn of the previous century. There is no doubt in my mind that this new material will significantly increase our understanding of early animal evolution,” said Dr. Jean-Bernard Caron, Curator of Invertebrate Paleontology at the ROM, Associate Professor at the University of Toronto and the study’s lead author. “The rate at which we are finding animals — many of which are new — is astonishing, and there is a high possibility that we’ll eventually find more species here than at the original Yoho National Park site, and potentially more than from anywhere else in the world.”

In a short 15-day field season, the researchers collected thousands of specimens representing more than 50 species, several of which were new to science. Incredibly, many of the species previously known from Yoho are better preserved in Kootenay, retaining very fine, never-before-seen anatomical details that are important for understanding the shape of the animal ‘family tree.’

The new site parallels Yoho in its spectacular richness of arthropods, a group that today represents more than 80% of all living animals, including insects, spiders and lobsters.

Another curious similarity between Marble Canyon and the original discovery is that both sites would still be buried today if not for the dedicated exploratory work of scientists.

In 1909, world-renowned paleontologist Charles Walcott spent a summer exploring Yoho National Park’s mountainous topography in search of hidden treasures, only to stumble upon what he would later name the Burgess Shale on the final day of his field season on August 29. Similarly, in 2012, a ROM field expedition led by Caron spent part of their summer in search of the next big paleontological discovery.

“We were already aware of the presence of some Burgess Shale fossils in Kootenay National Park,” said Dr. Robert Gaines, a geologist from Pomona College, who along with Caron and colleagues had spent August 2008 at a much smaller fossil deposit in the park located near Stanley Glacier. “We had a hunch that if we followed the formation along the mountain topography into new areas with the right rock types, maybe, just maybe, we would get lucky — though we never in our wildest dreams thought we’d track down a motherload like this.”

Just like Walcott a century before, a hunch led Caron and his team to a talus slope high in the Canadian Rockies. Along this rocky slope they found a startling variety of fossils that immediately caught their attention. The researchers then pinpointed the source of the fossils to higher up on the slopes and began to excavate the fossils layer-by-layer.

“It didn’t take us very long at all to realize that we had dug up something special,” added Gaines. “To me, the Burgess Shale is a grand tale in every way imaginable, and we are incredibly proud to be part of this new chapter and to keep the story alive and thriving in everyone’s imagination.”

“We are very excited to go back to the field this summer,” said Caron. “One of our main goals is to discover more new species.”

The new fossil site is protected by Parks Canada, with the exact location remaining confidential to protect its integrity. Future visitor opportunities have not been ruled out.

Burgess Shale facts:

• This new finding is the latest in a recent string of Burgess Shale discoveries, including confirmation that Pikaia, found only in Yoho National Park, is the most primitive known vertebrate and therefore the ancestor of all descendant vertebrates, including humans.

• In over 100 years of research, approximately 200 animal species have been identified at the original Burgess Shale discovery in Yoho National Park in over 600 field days. In just 15 days of field collecting, 50 animal species have already been unearthed at the new Kootenay National Park site.

• Some species found at the new Kootenay site are also found in China’s famous Chengjiang fossil beds, which are 10 million years older. This contributes to the pool of evidence suggesting that the local and worldwide distribution of Cambrian animals, as well as their longevity, might have been underestimated.

• The original Burgess Shale site in Yoho National Park was recognized in 1980 as one of Canada’s first UNESCO World Heritage Sites. Now protected under the larger Rocky Mountain Parks UNESCO World Heritage Site, the Burgess Shale attracts thousands of visitors to Yoho National Park each year for guided hikes to the restricted fossil beds from July to September. Both Parks Canada and the Burgess Shale Geoscience Foundation lead hikes to the fossils.

• All the Burgess Shale fossil specimens in the Marble Canyon area of were collected under a Parks Canada Research and Collection permit and are held in trust for Parks Canada at the Royal Ontario Museum in Toronto.

Giant mass extinction quicker than previously thought: End-Permian extinction happened in 60,000 years

The largest mass extinction in the history of animal life occurred some 252 million years ago, wiping out more than 96 percent of marine species and 70 percent of life on land — including the largest insects known to have inhabited Earth. Multiple theories have aimed to explain the cause of what’s now known as the end-Permian extinction, including an asteroid impact, massive volcanic eruptions, or a cataclysmic cascade of environmental events. But pinpointing the cause of the extinction requires better measurements of how long the extinction period lasted.

Now researchers at MIT have determined that the end-Permian extinction occurred over 60,000 years, give or take 48,000 years — practically instantaneous, from a geologic perspective. The new timescale is based on more precise dating techniques, and indicates that the most severe extinction in history may have happened more than 10 times faster than scientists had previously thought.

“We’ve got the extinction nailed in absolute time and duration,” says Sam Bowring, the Robert R. Shrock Professor of Earth and Planetary Sciences at MIT. “How do you kill 96 percent of everything that lived in the oceans in tens of thousands of years? It could be that an exceptional extinction requires an exceptional explanation.”

In addition to establishing the extinction’s duration, Bowring, graduate student Seth Burgess, and a colleague from the Nanjing Institute of Geology and Paleontology also found that, 10,000 years before the die-off, the oceans experienced a pulse of light carbon, which likely reflects a massive addition of carbon dioxide to the atmosphere. This dramatic change may have led to widespread ocean acidification and increased sea temperatures by 10 degrees Celsius or more, killing the majority of sea life.

But what originally triggered the spike in carbon dioxide? The leading theory among geologists and paleontologists has to do with widespread, long-lasting volcanic eruptions from the Siberian Traps, a region of Russia whose steplike hills are a result of repeated eruptions of magma. To determine whether eruptions from the Siberian Traps triggered a massive increase in oceanic carbon dioxide, Burgess and Bowring are using similar dating techniques to establish a timescale for the Permian period’s volcanic eruptions that are estimated to have covered over five million cubic kilometers.

“It is clear that whatever triggered extinction must have acted very quickly,” says Burgess, the lead author of a paper that reports the results in this week’s Proceedings of the National Academy of Sciences, “fast enough to destabilize the biosphere before the majority of plant and animal life had time to adapt in an effort to survive.”

Pinning dates on an extinction

In 2006, Bowring and his students made a trip to Meishan, China, a region whose rock formations bear evidence of the end-Permian extinction; geochronologists and paleontologists have flocked to the area to look for clues in its layers of sedimentary rock. In particular, scientists have focused on a section of rock that is thought to delineate the end of the Permian, and the beginning of the Triassic, based on evidence such as the number of fossils found in surrounding rock layers.

Bowring sampled rocks from this area, as well as from nearby alternating layers of volcanic ash beds and fossil-bearing rocks. After analyzing the rocks in the lab, his team reported in 2011 that the end-Permian likely lasted less than 200,000 years. However, this timeframe still wasn’t precise enough to draw any conclusions about what caused the extinction.

Now, the team has revised its estimates using more accurate dating techniques based on a better understanding of uncertainties in timescale measurements.

With this knowledge, Bowring and his colleagues reanalyzed rock samples collected from five volcanic ash beds at the Permian-Triassic boundary. The researchers pulverized rocks and separated out tiny zircon crystals containing a mix of uranium and lead. They then isolated uranium from lead, and measured the ratios of both isotopes to determine the age of each rock sample.

From their measurements, the researchers determined a much more precise “age model” for the end-Permian extinction, which now appears to have lasted about 60,000 years — with an uncertainty of 48,000 years — and was immediately preceded by a sharp increase in carbon dioxide in the oceans.

‘Spiraling toward the truth’

The new timeline adds weight to the theory that the extinction was triggered by massive volcanic eruptions from the Siberian Traps that released volatile chemicals, including carbon dioxide, into the atmosphere and oceans. With such a short extinction timeline, Bowring says it is possible that a single, catastrophic pulse of magmatic activity triggered an almost instantaneous collapse of all global ecosystems.

To confirm whether the Siberian Traps are indeed the extinction’s smoking gun, Burgess and Bowring plan to determine an equally precise timeline for the Siberian Traps eruptions, and will compare it to the new extinction timeline to see where the two events overlap. The researchers will investigate additional areas in China to see if the duration of the extinction can be even more precisely determined.

“We’ve refined our approach, and now we have higher accuracy and precision,” Bowring says. “You can think of it as slowly spiraling in toward the truth.”

 

Meet Xenoceratops: Canada’s Newest Horned Dinosaur

Nov. 8, 2012 — Scientists have named a new species of horned dinosaur (ceratopsian) from Alberta, Canada. Xenoceratops foremostensis (Zee-NO-Sare-ah-tops) was identified from fossils originally collected in 1958. Approximately 20 feet long and weighing more than 2 tons, the newly identified plant-eating dinosaur represents the oldest known large-bodied horned dinosaur from Canada
Research describing the new species is published in the October 2012 issue of the Canadian Journal of Earth Sciences.

“Starting 80 million years ago, the large-bodied horned dinosaurs in North America underwent an evolutionary explosion,” said lead author Dr. Michael Ryan, curator of vertebrate paleontology at The Cleveland Museum of Natural History. “Xenoceratops shows us that even the geologically oldest ceratopsids had massive spikes on their head shields and that their cranial ornamentation would only become more elaborate as new species evolved.”

Xenoceratops (Xeno + ceratops) means “alien horned-face,” referring to the strange pattern of horns on its head and the scarcity of horned dinosaur fossils from this part of the fossil record. It also honors the Village of Foremost, located close to where the dinosaur was discovered. Xenoceratops had a parrot-like beak with two long brow horns above its eyes. A large frill protruded from the back of its skull featuring two huge spikes.

“Xenoceratops provides new information on the early evolution of ceratopsids, the group of large-bodied horned dinosaurs that includes Triceratops,” said co-author Dr. David Evans of the Royal Ontario Museum and University of Toronto. “The early fossil record of ceratopsids remains scant, and this discovery highlights just how much more there is to learn about the origin of this diverse group.”

The new dinosaur is described from skull fragments from at least three individuals from the Foremost Formation originally collected by Dr. Wann Langston Jr. in the 1950s, and is currently housed in the Canadian Museum of Nature in Ottawa, Canada. Ryan and Evans stumbled upon the undescribed material more than a decade ago and recognized the bones as a new type of horned dinosaur. Evans later discovered a 50-year-old plaster field jacket at the Canadian Museum of Nature containing more skull bones from the same fossil locality and had them prepared in his lab at the Royal Ontario Museum.

This dinosaur is just the latest in a series of new finds being made by Ryan and Evans as part of their Southern Alberta Dinosaur Project, which is designed to fill in gaps in our knowledge of Late Cretaceous dinosaurs and study their evolution. This project focuses on the paleontology of some of the oldest dinosaur-bearing rocks in Alberta, which is less intensely studied than that of the famous badlands of Dinosaur Provincial Park and Drumheller.

“This discovery of a previously unknown species also drives home the importance of having access to scientific collections,” says co-author Kieran Shepherd, curator of paleobiology for the Canadian Museum of Nature, which holds the specimen. “The collections are an untapped source of new material for study, and offer the potential for many new discoveries.”

Xenoceratops was identified by a team comprising palaeontologists Dr. Michael J. Ryan, curator of vertebrate paleontology at The Cleveland Museum of Natural History; and Dr. David Evans, curator, vertebrate palaeontology of the Department of Natural History at the Royal Ontario Museum; as well as Kieran Shepherd, curator of paleobiology for the Canadian Museum of Nature.

How Could Dinosaurs Weigh Up to 80 Tons? New Research On Sauropod Gigantism

Jan. 14, 2014 — Sauropods, the largest land animals in Earth’s history, are still mightily puzzling the scientists. These plant-eating dinosaurs with their long necks and small heads could reach a height of 10 meters or more and dominated all other land vertebrates in terms of size. They could weigh up to 80 tons, more than any other known land vertebrate. One question that has been intensely debated is how these giants of the animal kingdom regulated their own body temperature.

According to the calculations of the Mainz-based ecologist, the body temperature of these animals did not increase with body weight. Her estimates indicate that sauropods may have had an average body temperature of some 28 degrees Celsius. The upper limit for the body temperature that can be tolerated by vertebrate species living today is 45 degrees Celsius. The body temperatures that Griebeler postulates for the sauropods are thus well below those of today’s endothermic vertebrates but consistent with those of ectothermic monitor lizards. Her calculations of sauropod body temperature take into account the relationship between the maximum rate of growth and the basal metabolic rate of an animal, whereby the latter is largely determined by body temperature.

Griebeler’s work is part of a collection that brings together the results of recent research into sauropod gigantism. The gigantism of these vertebrates, unique in the history of Earth, raises many questions, such as why no other land creatures have ever achieved this size and what their bauplan, physiology, and life cycle would have been like. The collection put together by the leading open access journal PLOS ONE consists of 14 contributions from the fields of ecology, morphology, animal nutrition, and paleontology that all address the fundamental question of how the sauropods managed to become so extraordinarily massive.

“We are pleased that this new research is freely accessible not only to other scientists, but also to sauropod fans,” said PD Dr. Eva Maria Griebeler. She and Dr. Jan Werner are members of the research group “Biology of the Sauropod Dinosaurs: The Evolution of Gigantism (FOR 533),” funded by the German Research Foundation (DFG). The collection was initiated as a result of a related international conference on this subject. Both scientists from the Ecology division at the Institute of Zoology at Mainz University have been working for more than six years within this research group. They have written three of the 14 contributions in the collection.

In one article, Jan Werner and his colleague Koen Stein of the University of Bonn describe a new method of determining the density of bone tissue and juxtapose sauropod data and results extrapolated for comparable endothermic mammals. Although the bone structure and the density of certain tissues of sauropods were similar to those of today’s mammals, the results do not conclusively demonstrate that sauropods were also endothermic animals. Other functional aspects, such as similar weight-bearing stresses, could have resulted in the development of convergent forms of bone tissue.

Another article looks at the reproductive biology of sauropods. Here Werner and Griebeler discuss the hypothesis that a high rate of reproduction contributed to the gigantism of the large dinosaurs. They discovered that the reproductive pattern of most dinosaurs was similar to that of modern reptiles and birds. The reproductive pattern of theropods, i.e., ancestors of the modern birds, turned out to be comparable with that of birds, prosauropods, and sauropods rather than reptiles. However, contrary to the assumptions of previous studies, the calculations of the Mainz scientists did not corroborate the hypothesis that the large dinosaurs would have laid a particularly large number of eggs. In terms of total eggs produced annually, this number could not have exceeded 200 to 400 eggs for a sauropod weighing 75 tons. Today’s large sea turtles are known to lay clutches in this range.

First Dinosaurs Identified from Saudi Arabia

Jan. 7, 2014 — Dinosaur fossils are exceptionally rare in the Arabian Peninsula. An international team of scientists from Uppsala University, Museum Victoria, Monash University, and the Saudi Geological Survey have now uncovered the first record of dinosaurs from Saudi Arabia.

What is now dry desert was once a beach littered with the bones and teeth of ancient marine reptiles and dinosaurs.

A string of vertebrae from the tail of a huge “Brontosaurus-like” sauropod, together with some shed teeth from a carnivorous theropod represent the first formally identified dinosaur fossils from Saudi Arabia, and were found in the north-western part of the Kingdom along the coast of the Red Sea.

The remains were discovered during excavations conducted by a team of scientists working under the auspices of the Saudi Geological Survey, Jeddah.

The dinosaur finds were recently published in the scientific journal PLOS ONE and jointly authored by participating researchers from Sweden, Australia and Saudi Arabia.

“Dinosaur fossils are exceptionally rare in the Arabian Peninsula, with only a handful of highly fragmented bones documented this far” says Dr Benjamin Kear, based at Uppsala University in Sweden and lead author of the study.

“This discovery is important not only because of where the remains were found, but also because of the fact that we can actually identify them. Indeed, these are the first taxonomically recognizable dinosaurs reported from the Arabian Peninsula” Dr Kear continues.

“Dinosaur remains from the Arabian Peninsula and the area east of the Mediterranean Sea are exceedingly rare because sedimentary rocks deposited in streams and rivers during the Age of Dinosaurs are rare, particularly in Saudi Arabia itself” says Dr Tom Rich from Museum Victoria in Australia.

When these dinosaurs were alive, the Arabian landmass was largely underwater and formed the north-western coastal margin of the African continent.

“The hardest fossil to find is the first one. Knowing that they occur in a particular area and the circumstances under which they do, makes finding more fossils significantly less difficult” says Dr Rich.

The teeth and bones are approximately 72 million years old.

Two types of dinosaur were described from the assemblage, a bipedal meat-eating abelisaurid distantly related to Tyrannosaurus but only about six metres long, and a plant-eating titanosaur perhaps up to 20 metres in length.

Similar dinosaurs have been found in North Africa, Madagascar and as far away as South America.

Fossil Pigments Reveal the Colors of Ancient Sea Monsters

Jan. 8, 2014 — During the Age of the dinosaurs, huge reptiles, such as mosasaurs and ichthyosaurs, ruled the seas. Previously, scientists could only guess what colours these spectacular animals had; however, pigment preserved in fossilised skin has now been analysed at SP Technical Research Institute of Sweden and MAX IV Laboratory, Lund University, Sweden. The unique soft tissue remains were obtained from a 55 million-year-old leatherback turtle, an 85 million-year-old mosasaur and a 196-190 million-year-old ichthyosaur. This is the first time that the colour scheme of any extinct marine animal has been revealed.

“This is fantastic! When I started studying at Lund University in 1993, the film Jurassic Park had just been released, and that was one of the main reasons why I got interested in biology and palaeontology. Then, 20 years ago, it was unthinkable that we would ever find biological remains from animals that have been extinct for many millions of years, but now we are there and I am proud to be a part of it,” said Johan Lindgren about the discovery of the ancient pigment molecules.

Johan Lindgren is a scientist at Lund University in Sweden, and he is the leader of the international research team that has studied the fossils. Together with colleagues from Denmark, England and the USA, he now presents the results of their study in the scientific journal Nature. The most sensational aspect of the investigation is that it can now be established that these ancient marine reptiles were, at least partially, dark-coloured in life, something that probably contributed to more efficient thermoregulation, as well as providing means for camouflage and protection against harmful UV radiation.

The analysed fossils are composed of skeletal remains, in addition to dark skin patches containing masses of micrometre-sized, oblate bodies. These microbodies were previously interpreted to be the fossilised remains of those bacteria that once contributed to the decomposition and degradation of the carcasses. However, by studying the chemical content of the soft tissues, Lindgren and his colleagues are now able to show that they are in fact remnants of the animals’ own colours, and that the micrometre-sized bodies are fossilised melanosomes, or pigment-containing cellular organelles.

“Our results really are amazing. The pigment melanin is almost unbelievably stable. Our discovery enables us to make a journey through time and to revisit these ancient reptiles using their own biomolecules. Now, we can finally use sophisticated molecular and imaging techniques to learn what these animals looked like and how they lived,” said Per Uvdal, one of the co-authors of the study, and who works at the MAX IV Laboratory.

Mosasaurs (98-66 million years ago) are giant marine lizards that could reach 15 metres in body length, whereas ichthyosaurs (250-94 million years ago) could become even larger. Both ichthyosaurs and mosasaurs died out during the Cretaceous Period, but leatherback turtles are still around today. A conspicuous feature of the living leatherback turtle, Dermochelys, is that it has an almost entirely black back, which probably contributes to its worldwide distribution. The ability of leatherback turtles to survive in cold climates has mainly been attributed to their huge size, but it has also been shown that these animals bask at the sea surface during daylight hours. The black colour enables them to heat up faster and to reach higher body temperatures than had they instead been lightly coloured.

“The fossil leatherback turtle probably had a similar colour scheme and lifestyle as does Dermochelys. Similarly, mosasaurs and ichthyosaurs, which also had worldwide distributions, may have used their darkly coloured skin to heat up quickly between dives,” said Johan Lindgren.

If their interpretations are correct, then at least some ichthyosaurs were uniformly dark-coloured in life, unlike most living marine animals. However, the modern deep-diving sperm whale has a similar colour scheme, perhaps as camouflage in a world without light, or as UV protection, given that these animals spend extended periods of time at or near the sea surface in between dives. The ichthyosaurs are also believed to have been deep-divers, and if their colours were similar to those of the living sperm whale, then this would also suggest a similar lifestyle, according to Lindgren.