Age-old relationship between birds and flowers: World’s oldest fossil of a nectarivorous bird

Scientists of the Senckenberg Research Institute in Frankfurt have described the oldest known fossil of a pollinating bird. The well-preserved stomach contents contained pollen from various flowering plants. This indicates that the relationship between birds and flowers dates back at least 47 million years. The fossil comes from the well-known fossil site “Messel Pit.” The study was published today in the scientific journal Biology Letters.
They fly from flower to flower, and with their long, slender bills they transfer the pollen required for the plants’ reproduction. Particularly in the tropics and subtropics, birds, besides insects, serve as the most important pollinators.

“While this process is well known and understood in the present, geological history has offered very little evidence of pollination through birds,” says Dr. Gerald Mayr, head of the Ornithological Section at the Senckenberg Research Institute in Frankfurt. He adds, “there have been occasional hints, such as characteristic bill shapes, that nectarivorous birds occurred in the past, but, so far, there existed no conclusive evidence.”

Now, however, the ornithologist from Frankfurt and his colleague, paleobotanist Dr. Volker Wilde, have found this evidence. In the well-preserved stomach contents of a fossil bird unearthed in the Messel Pit, the scientists discovered fossilized pollen grains.

“This is another discovery that underlines the unique significance of the Messel fossil site,” exclaims a delighted Dr. Wilde. “Not only does the presence of pollen offer direct evidence of the bird’s feeding habits, but it shows that birds already visited flowers as long as 47 million years ago!”

Fossil evidence for the existence of pollinating insects dates back to the Cretaceous period. Until now, however, there had been no information at what time pollination through vertebrates, and birds in particular, came into existence. To date, the oldest indication of an avian pollinator came from the early Oligocene, about 30 million years ago. “But this hummingbird fossil only offers indirect evidence of the existence of nectarivorous birds,” explains Mayr. “Thanks to the excellent state of preservation of the Messel bird, we were able to identify two different types of pollen, which is the first conclusive proof of nectarivory.”

Large numbers of differently sized pollen grains were found in the stomach contents of the completely preserved avian fossil. “Along with the bird’s skeletal anatomy, this indicates that we indeed have the fossil of a nectarivorous bird” explains Wilde.

And the spectacular discovery also suggests another conclusion: If a pollinating bird lived as much as 47 million years ago, it must be assumed that some representatives of the flora at that time had already adapted to this mode of pollination.

“To date, there are no fossil plants from this geological era that offer proof of the existence of ornithophily — i.e., the pollination of flowers through birds,” adds paleobotanist Wilde.

“However, the characteristic traits of bird-pollinated plants, such as red flowers or a lack of scent, do not fossilize,” elaborates Mayr. This lends an even greater importance to discoveries such as the Messel bird to understand the interactions between birds and flowers through geological time.

Rare leafcutter bee fossils reveal Ice Age environment at the La Brea Tar Pits

Concerns about climate change and its impact on the world around us are growing daily. New scientific studies at the La Brea Tar Pits are probing the link between climate warming and the evolution of Ice Age predators, attempting to predict how animals will respond to climate change today.

The La Brea Tar Pits are famous for the amazing array of Ice Age fossils found there, such as ground sloths, mammoths, and predators like saber-toothed cats and powerful dire wolves. But the climate during the end of the Ice Age (50,000-11,000 years ago) was unstable, with rapid warming and cooling. New research reported here has documented the impact of this climate change on La Brea predators for the first time.

Two new studies published by research associates at of the Page Museum document significant change over time in the skulls of both dire wolves and saber-toothed cats. “Different tar pits at La Brea accumulated at different times,” said F. Robin O’Keefe of Marshall University, lead author on the dire wolf study. “When we compare fossils deposited at different times, we see big changes. We can actually watch evolution happening.”
After the end of the last Ice Age, La Brea dire wolves became smaller and more graceful, adapting to take smaller prey as glaciers receded and climate warmed. This rapidly changing climate drove change in saber-toothed cats as well. “Saber-toothed cats show a clear correlation between climate and shape. Cats living after the end of the Ice Age are larger, and adapted to taking larger prey,” said Julie Meachen of Des Moines University, lead author on the sabertooth study.
The two scientists discuss their work in a video here: http://www.youtube.com/watch?v=jK_DKSNbgR4&feature=youtu.be
“We can see animals adapting to a warming climate at La Brea,” said O’Keefe. “Then humans show up and all the big ones disappear. We haven’t been able to establish causality there yet. But we are working on it.”
The emerging links between climate change and evolution needs further study. There are many unanswered questions; such as why predators change in the ways that they do, the importance of factors other than climate, and whether the arrival of humans played a role in the mass extinction at the end of the Ice Age. “There is much work to be done on the specimens from the tar pits. We are working actively to bring together the researchers and resources needed to expand on these discoveries,” says John Harris, chief curator at the Page Museum. “Climate change is a pressing issue for all of us, and we must take advantage of what Rancho La Brea can teach us about how ecosystems react to it.”

Rare fossilized embryos more than 500 million years old found

The Cambrian Period is a time when most phyla of marine invertebrates first appeared in the fossil record. Also dubbed the “Cambrian explosion,” fossilized records from this time provide glimpses into evolutionary biology when the world’s ecosystems rapidly changed and diversified. Most fossils show the organisms’ skeletal structure, which may or may not give researchers accurate pictures of these prehistoric organisms. Now, researchers at the University of Missouri have found rare, fossilized embryos they believe were undiscovered previously. Their methods of study may help with future interpretation of evolutionary history.

“Before the Ediacaran and Cambrian Periods, organisms were unicellular and simple,” said James Schiffbauer, assistant professor of geological sciences in the MU College of Arts and Science. “The Cambrian Period, which occurred between 540 million and 485 million years ago, ushered in the advent of shells. Over time, shells and exoskeletons can be fossilized, giving scientists clues into how organisms existed millions of years ago. This adaptation provided protection and structural integrity for organisms. My work focuses on those harder-to-find, soft-tissue organisms that weren’t preserved quite as easily and aren’t quite as plentiful.”
Schiffbauer and his team, including Jesse Broce, a Huggins Scholar doctoral student in the Department of Geological Sciences at MU, now are studying fossilized embryos in rocks that provide rare opportunities to study the origins and developmental biology of early animals during the Cambrian explosion.
Broce collected fossils from the lower Cambrian Shuijingtuo Formation in the Hubei Province of South China and analyzed samples to determine the chemical makeup of the rocks. Soft tissue fossils have different chemical patterns than harder, skeletal remains, helping researchers identify the processes that contributed to their preservation. It is important to understand how the fossils were preserved, because their chemical makeups can also offer clues about the nature of the organisms’ original tissues, Schiffbauer said.
“Something obviously went wrong in these fossils,” Schiffbauer said. “Our Earth has a pretty good way of cleaning up after things die. Here, the cells’ self-destructive mechanisms didn’t happen, and these soft tissues could be preserved. While studying the fossils we collected, we found over 140 spherically shaped fossils, some of which include features that are reminiscent of division stage embryos, essentially frozen in time.”
The fossilized embryos the researchers found were significantly smaller than other fossil embryos from the same time period, suggesting they represent a yet undescribed organism. Additional research will focus on identifying the parents of these embryos, and their evolutionary position.
Schiffbauer and his colleagues published this and related research in a volume of the Journal of Paleontology which he co-edited.

Ancient whodunit may be solved: Methane-producing microbes did it!

Evidence left at the crime scene is abundant and global: Fossil remains show that sometime around 252 million years ago, about 90 percent of all species on Earth were suddenly wiped out — by far the largest of this planet’s five known mass extinctions. But pinpointing the culprit has been difficult, and controversial.
Now, a team of MIT researchers may have found enough evidence to convict the guilty parties — but you’ll need a microscope to see the killers.
The perpetrators, this new work suggests, were not asteroids, volcanoes, or raging coal fires, all of which have been implicated previously. Rather, they were a form of microbes — specifically, methane-producing archaea called Methanosarcina — that suddenly bloomed explosively in the oceans, spewing prodigious amounts of methane into the atmosphere and dramatically changing the climate and the chemistry of the oceans.
Volcanoes are not entirely off the hook, according to this new scenario; they have simply been demoted to accessories to the crime. The reason for the sudden, explosive growth of the microbes, new evidence shows, may have been their novel ability to use a rich source of organic carbon, aided by a sudden influx of a nutrient required for their growth: the element nickel, emitted by massive volcanism at just that time.
The new solution to this mystery is published this week in the Proceedings of the National Academy of Sciences by MIT professor of geophysics Daniel Rothman, postdoc Gregory Fournier, and five other researchers at MIT and in China.
The researchers’ case builds upon three independent sets of evidence. First, geochemical evidence shows an exponential (or even faster) increase of carbon dioxide in the oceans at the time of the so-called end-Permian extinction. Second, genetic evidence shows a change in Methanosarcina at that time, allowing it to become a major producer of methane from an accumulation of carbon dioxide in the water. Finally, sediments show a sudden increase in the amount of nickel deposited at exactly this time.
The carbon deposits show that something caused a significant uptick in the amount of carbon-containing gases — carbon dioxide or methane — produced at the time of the mass extinction. Some researchers have suggested that these gases might have been spewed out by the volcanic eruptions that produced the Siberian traps, a vast formation of volcanic rock produced by the most extensive eruptions in Earth’s geological record. But calculations by the MIT team showed that these eruptions were not nearly sufficient to account for the carbon seen in the sediments. Even more significantly, the observed changes in the amount of carbon over time don’t fit the volcanic model.
“A rapid initial injection of carbon dioxide from a volcano would be followed by a gradual decrease,” Fournier says. “Instead, we see the opposite: a rapid, continuing increase.”
“That suggests a microbial expansion,” he adds: The growth of microbial populations is among the few phenomena capable of increasing carbon production exponentially, or even faster.
But if living organisms belched out all that methane, what organisms were they, and why did they choose to do so at that time?
That’s where genomic analysis can help: It turns out that Methanosarcina had acquired a particularly fast means of making methane, through gene transfer from another microbe — and the team’s detailed mapping of the organism’s history now shows that this transfer happened at about the time of the end-Permian extinction. (Previous studies had only placed this event sometime in the last 400 million years.) Given the right conditions, this genetic acquisition set the stage for the microbe to undergo a dramatic growth spurt, rapidly consuming a vast reserve of organic carbon in the ocean sediments.
But there is one final piece to the puzzle: Those organisms wouldn’t have been able to proliferate so prodigiously if they didn’t have enough of the right mineral nutrients to support them. For this particular microbe, the limiting nutrient is nickel — which, new analysis of sediments in China showed, increased dramatically following the Siberian eruptions (which were already known to have produced some of the world’s largest deposits of nickel). That provided the fuel for Methanosarcina’s explosive growth.
The resulting outburst of methane produced effects similar to those predicted by current models of global climate change: a sudden, extreme rise in temperatures, combined with acidification of the oceans. In the case of the end-Permian extinction, virtually all shell-forming marine organisms were wiped out — consistent with the observation that such shells cannot form in acidic waters.
“A lot of this rests on the carbon isotope analysis,” Rothman says, which is exceptionally strong and clear in this part of the geological record. “If it wasn’t such an unusual signal, it would be harder to eliminate other possibilities.”
While no single line of evidence can prove exactly what happened in this ancient die-off, says Rothman, who is also director of MIT’s Lorenz Center, “the cumulative impact of all these things is much more powerful than any one individually.” While it doesn’t conclusively prove that the microbes did it, it does rule out some alternative theories, and makes a strong and consistent case, he says.

Bighead carp: From 5 to 150 centimeters in 37 million years

During excavations in the open lignite-mining pit Na Duong in Vietnam, a joint team from the University of Tübingen and the Senckenberg Center for Human Evolution and Palaeoenvironment Tübingen discovered the world’s oldest bighead carp. With a length of only 5 centimeters, Planktophaga minuta is also the smallest known fossil representative of this East Asian group. Modern bighead carp are among the largest members of the carp family, reaching a length of up to 1.5 meters and a weight of 50 kilograms.

Since 2008, an international research team led by Prof. Dr. Madelaine Böhme from the Senckenberg Center for Human Evolution and Palaeoenvironment (HEP) of the University of Tübingen has been studying prehistoric ecosystems and fossils in Vietnam. In the course of this research the scientists discovered approximately 37 million-year-old sediments from Lake RhinChua, dating to the late Eocene. These freshwater sediments contained a wealth of fossilized animals and plants; hence, Lake RhinChua is also referred to as the “Asian Messel” by the researchers.

During their studies the team discovered teeth belonging to an entirely new genus and species of fish: The oldest known bighead carp, Planktophaga minuta, is a representative of the “East Asian group of Leuciscinae.” With a length of ca. 5 centimeters it is the smallest fossil representative of this East Asian group, and a mere dwarf compared to its modern living relatives. Modern bighead carp are among the largest members of the carp family. They grow up to a length of 1.5 meters and can weigh in at 50 kilograms.

Planktophaga minuta and its relatives

Besides Planktophaga minuta (which translates to small plankton eater), an additional six species of carp have been discovered in Lake RhinChua. All of them have living relatives that are still found today in China’s Pearl and Yangtze River system. This is proof that the roots of the modern freshwater fish fauna in Southeast Asia reach far into the past.

Bighead carp in exile

Originally, the bighead carp was native to the larger rivers and stagnant water bodies of southern China. During the 1960s, bighead carp were introduced in Europe, including Germany, as a means to control aquatic plants. Only later did researchers discover that the bighead carp failed to “fulfill this task,” since they mainly feed on animal plankton. In Europe, introduced bighead carp can be found in ponds, lakes and occasionally in streams and rivers.

First discovery of dinosaur fossils in Malaysia

A team of palaeontology researchers from the Department of Geology, Faculty of Science, University of Malaya and Japanese universities (Waseda University and Kumamoto University) has found dinosaur fossil teeth in the rural interiors of Pahang — the first known discovery of dinosaur remains in Malaysia.

We have started our collaboration and carried out field expeditions to search for potential dinosaur deposits in Malaysia since Sep. 2012. Recently, we have successfully confirmed the presence of dinosaur remains (fossilised teeth) in Pahang,” said lead researcher, Dr. Masatoshi Sone.

“Acting as a team leader, and one of the collaborators, Professor Ren Hirayama from Waseda University (Tokyo), a specialist in reptile palaeontology, identified that one of the teeth, Sample UM10575, belongs to a spinosaurid dinosaur (known as a carnivorous “fish-eating” dinosaur),” he added.

UM10575 is about 23mm long and 10mm wide. It develops fairly distinct carinae (front and rear edges) with serrations, typical to a tooth of a theropod (carnivorous dinosaur). Well-marked coarse ridges are developed on the surface of the tooth, and the surface bears micro-ornament (very fine sculptures); these characterise a spinosaurid tooth.

The new fossils were found from sedimentary rock strata of late Mesozoic age, most likely Cretaceous (ca. 145-75 million years ago). In the interior of Peninsular Malaysia, Jurassic¬-Cretaceous sediments are known to be widely distributed, so that the team researchers have targeted a potential dinosaur deposit there since.

It is expected that large deposits of dinosaur fossils still remain in Malaysia. We currently continue further research and hope to conduct more extensive field investigations that may disclose more significant finds.

Alongside making the public announcement of this discovery, it is urgent to take measures for the protection and conservation of the present fossil site (and to make it accessible only to the qualified researchers). Since the site is in the open area, it is concerned that, once the public is aware, some destruction due to lawless excavations by private fossil collectors and/or robbers may happen, as has happened, for example, in Thailand, Laos, and Mongolia.

It is also hoped that the current discovery can lead to development of palaeontology study in the country and to eventually establish a Malaysian dinosaur museum in a near future.

Revision to rules for color in dinosaurs suggests connection between color and physiology

New research that revises the rules allowing scientists to decipher color in dinosaurs may also provide a tool for understanding the evolutionary emergence of flight and changes in dinosaur physiology prior to its origin.

In a survey comparing the hair, skin, fuzz and feathers of living terrestrial vertebrates and fossil specimens, a research team from The University of Texas at Austin, the University of Akron, the China University of Geosciences and four other Chinese institutions found evidence for evolutionary shifts in the rules that govern the relationship between color and the shape of pigment-containing organelles known as melanosomes, as reported in the Feb. 13 edition of Nature.

At the same time, the team unexpectedly discovered that ancient maniraptoran dinosaurs, paravians, and living mammals and birds uniquely shared the evolutionary development of diverse melanosome shapes and sizes. (Diversity in the shape and size of melanosomes allows scientists to decipher color.) The evolution of diverse melanosomes in these organisms raises the possibility that melanosome shape and size could yield insights into dinosaur physiology.

Melanosomes have been at the center of recent research that has led scientists to suggest the colors of ancient fossil specimens covered in fuzz or feathers.

Melanosomes contain melanin, the most common light-absorbing pigment found in animals. Examining the shape of melanosomes from fossil specimens, scientists have recently suggested the color of several ancient species, including the fuzzy first-discovered feathered dinosaur Sinosauropteryx, and feathered species like Microraptor and Anchiornis.

According to the new research, color-decoding works well for some species, but the color of others may be trickier than thought to reconstruct.

Comparing melanosomes of 181 extant specimens, 13 fossil specimens and all previously published data on melanosome diversity, the researchers found that living turtles, lizards and crocodiles, which are ectothermic (commonly known as cold-blooded), show much less diversity in the shape of melanosomes than birds and mammals, which are endothermic (warm-blooded, with higher metabolic rates).

The limited diversity in melanosome shape among living ectotherms shows little correlation to color. The same holds true for fossil archosaur specimens with fuzzy coverings scientists have described as “protofeathers” or “pycnofibers.” In these specimens, melanosome shape is restricted to spherical forms like those in modern reptiles, throwing doubt on the ability to decipher the color of these specimens from fossil melanosomes.

In contrast, in the dinosaur lineage leading to birds, the researchers found an explosion in the diversity of melanosome shape and size that appears to correlate to an explosion of color within these groups. The shift in diversity took place abruptly, near the origin of pinnate feathers in maniraptoran dinosaurs.

“This points to a profound change at a pretty discrete point,” says author Julia Clarke of The University of Texas at Austin’s Jackson School of Geosciences. “We’re seeing an explosion of melanosome diversity right before the origin of flight associated with the origin of feathers.”

What surprised the researchers was a similarity in the pattern of melanosome diversity among ancient maniraptoran dinosaurs, paravians, and living mammals and birds.

“Only in living, warm-blooded vertebrates that independently evolved higher metabolic rates do we see the melanosome diversity we also see in feathered dinosaurs,” said co-author Matthew Shawkey of The University of Akron.

Many of the genes involved in the melanin color system are also involved in other core processes such as food intake, the stress axis, and reproductive behaviors. Because of this, note the researchers, it is possible that the evolution of diverse melanosome shapes is linked to larger changes in energetics and physiology.

Melanosome shape could end up offering a new tool for studying endothermy in fossil specimens, a notoriously challenging subject for paleontologists.

Because the explosion of diversity in melanosomes appears to have taken place right at the origin of pinnate feathers, the change may indicate that a key shift in dinosaurian physiology occurred prior to the origin of flight.

“We are far from understanding the exact nature of the shift that may have occurred,” says Clarke. “But if changes in genes involved in both coloration and other aspects of physiology explain the pattern we see, these precede flight and arise close to the origin of feathers.”

It is possible, notes Clarke, that a diversity in melanosome shape (and correlated color changes) resulted from an increased evolutionary role for signaling and sexual selection that had a carryover effect on physiology, or that a change in physiology closely preceded changes in color patterning. At this point, she stresses, both ideas are speculative.

“What is interesting is that trying to get at color in extinct animals may have just started to give us some insights into changes in the physiology of dinosaurs.”


‘Steak-knife’ teeth reveal ecology of oldest land predators

The first top predators to walk on land were not afraid to bite off more than they could chew, a University of Toronto Mississauga study has found.

Graduate student and lead author Kirstin Brink along with Professor Robert Reisz from U of T Mississauga’s Department of Biology suggest that Dimetrodon, a carnivore that walked on land between 298 million and 272 million years ago, was the first terrestrial vertebrate to develop serrated ziphodont teeth.

According to the study published in Nature Communications, ziphodont teeth, with their serrated edges, produced a more-efficient bite and would have allowed Dimetrodon to eat prey much larger than itself.

While most meat-eating dinosaurs possessed ziphodont teeth, fossil evidence suggests serrated teeth first evolved in Dimetrodon some 40 million years earlier than theropod dinosaurs.

“Technologies such as scanning electron microscope (SEM) and histology allowed us to examine these teeth in detail to reveal previously unknown patterns in the evolutionary history of Dimetrodon,” Brink said.

The four-meter-long Dimetrodon was the top of the terrestrial food chain in the Early Permian Period and is considered to be the forerunner of mammals.

According to Brink and Reisz’s research, Dimetrodon had a diversity of previously unknown tooth structures and were also the first terrestrial vertebrate to develop cusps — teeth with raised points on the crown, which are dominant in mammals.

The study also suggests ziphodont teeth were confined to later species of Dimetrodon, indicating a gradual change in feeding habits.

“This research is an important step in reconstructing the structure of ancient complex communities,” Reisz said.

“Teeth tell us a lot more about the ecology of animals than just looking at the skeleton.”

“We already know from fossil evidence which animals existed at that time but now with this type of research we are starting to piece together how the members of these communities interacted.”

Brink and Reisz studied the changes in Dimetrodon teeth across 25 million years of evolution.

The analysis indicated the changes in tooth structure occurred in the absence of any significant evolution in skull morphology. This, Brink and Reisz suggest, indicates a change in feeding style and trophic interactions.

“The steak knife configuration of these teeth and the architecture of the skull suggest Dimetrodon was able to grab and rip and dismember large prey,” Reisz said.

“Teeth fossils have attracted a lot of attention in dinosaurs but much less is known about the animals that lived during this first chapter in terrestrial evolution.”

 

Meet Xenoceratops: Canada’s Newest Horned Dinosaur

Nov. 8, 2012 — Scientists have named a new species of horned dinosaur (ceratopsian) from Alberta, Canada. Xenoceratops foremostensis (Zee-NO-Sare-ah-tops) was identified from fossils originally collected in 1958. Approximately 20 feet long and weighing more than 2 tons, the newly identified plant-eating dinosaur represents the oldest known large-bodied horned dinosaur from Canada
Research describing the new species is published in the October 2012 issue of the Canadian Journal of Earth Sciences.

“Starting 80 million years ago, the large-bodied horned dinosaurs in North America underwent an evolutionary explosion,” said lead author Dr. Michael Ryan, curator of vertebrate paleontology at The Cleveland Museum of Natural History. “Xenoceratops shows us that even the geologically oldest ceratopsids had massive spikes on their head shields and that their cranial ornamentation would only become more elaborate as new species evolved.”

Xenoceratops (Xeno + ceratops) means “alien horned-face,” referring to the strange pattern of horns on its head and the scarcity of horned dinosaur fossils from this part of the fossil record. It also honors the Village of Foremost, located close to where the dinosaur was discovered. Xenoceratops had a parrot-like beak with two long brow horns above its eyes. A large frill protruded from the back of its skull featuring two huge spikes.

“Xenoceratops provides new information on the early evolution of ceratopsids, the group of large-bodied horned dinosaurs that includes Triceratops,” said co-author Dr. David Evans of the Royal Ontario Museum and University of Toronto. “The early fossil record of ceratopsids remains scant, and this discovery highlights just how much more there is to learn about the origin of this diverse group.”

The new dinosaur is described from skull fragments from at least three individuals from the Foremost Formation originally collected by Dr. Wann Langston Jr. in the 1950s, and is currently housed in the Canadian Museum of Nature in Ottawa, Canada. Ryan and Evans stumbled upon the undescribed material more than a decade ago and recognized the bones as a new type of horned dinosaur. Evans later discovered a 50-year-old plaster field jacket at the Canadian Museum of Nature containing more skull bones from the same fossil locality and had them prepared in his lab at the Royal Ontario Museum.

This dinosaur is just the latest in a series of new finds being made by Ryan and Evans as part of their Southern Alberta Dinosaur Project, which is designed to fill in gaps in our knowledge of Late Cretaceous dinosaurs and study their evolution. This project focuses on the paleontology of some of the oldest dinosaur-bearing rocks in Alberta, which is less intensely studied than that of the famous badlands of Dinosaur Provincial Park and Drumheller.

“This discovery of a previously unknown species also drives home the importance of having access to scientific collections,” says co-author Kieran Shepherd, curator of paleobiology for the Canadian Museum of Nature, which holds the specimen. “The collections are an untapped source of new material for study, and offer the potential for many new discoveries.”

Xenoceratops was identified by a team comprising palaeontologists Dr. Michael J. Ryan, curator of vertebrate paleontology at The Cleveland Museum of Natural History; and Dr. David Evans, curator, vertebrate palaeontology of the Department of Natural History at the Royal Ontario Museum; as well as Kieran Shepherd, curator of paleobiology for the Canadian Museum of Nature.

How Could Dinosaurs Weigh Up to 80 Tons? New Research On Sauropod Gigantism

Jan. 14, 2014 — Sauropods, the largest land animals in Earth’s history, are still mightily puzzling the scientists. These plant-eating dinosaurs with their long necks and small heads could reach a height of 10 meters or more and dominated all other land vertebrates in terms of size. They could weigh up to 80 tons, more than any other known land vertebrate. One question that has been intensely debated is how these giants of the animal kingdom regulated their own body temperature.

According to the calculations of the Mainz-based ecologist, the body temperature of these animals did not increase with body weight. Her estimates indicate that sauropods may have had an average body temperature of some 28 degrees Celsius. The upper limit for the body temperature that can be tolerated by vertebrate species living today is 45 degrees Celsius. The body temperatures that Griebeler postulates for the sauropods are thus well below those of today’s endothermic vertebrates but consistent with those of ectothermic monitor lizards. Her calculations of sauropod body temperature take into account the relationship between the maximum rate of growth and the basal metabolic rate of an animal, whereby the latter is largely determined by body temperature.

Griebeler’s work is part of a collection that brings together the results of recent research into sauropod gigantism. The gigantism of these vertebrates, unique in the history of Earth, raises many questions, such as why no other land creatures have ever achieved this size and what their bauplan, physiology, and life cycle would have been like. The collection put together by the leading open access journal PLOS ONE consists of 14 contributions from the fields of ecology, morphology, animal nutrition, and paleontology that all address the fundamental question of how the sauropods managed to become so extraordinarily massive.

“We are pleased that this new research is freely accessible not only to other scientists, but also to sauropod fans,” said PD Dr. Eva Maria Griebeler. She and Dr. Jan Werner are members of the research group “Biology of the Sauropod Dinosaurs: The Evolution of Gigantism (FOR 533),” funded by the German Research Foundation (DFG). The collection was initiated as a result of a related international conference on this subject. Both scientists from the Ecology division at the Institute of Zoology at Mainz University have been working for more than six years within this research group. They have written three of the 14 contributions in the collection.

In one article, Jan Werner and his colleague Koen Stein of the University of Bonn describe a new method of determining the density of bone tissue and juxtapose sauropod data and results extrapolated for comparable endothermic mammals. Although the bone structure and the density of certain tissues of sauropods were similar to those of today’s mammals, the results do not conclusively demonstrate that sauropods were also endothermic animals. Other functional aspects, such as similar weight-bearing stresses, could have resulted in the development of convergent forms of bone tissue.

Another article looks at the reproductive biology of sauropods. Here Werner and Griebeler discuss the hypothesis that a high rate of reproduction contributed to the gigantism of the large dinosaurs. They discovered that the reproductive pattern of most dinosaurs was similar to that of modern reptiles and birds. The reproductive pattern of theropods, i.e., ancestors of the modern birds, turned out to be comparable with that of birds, prosauropods, and sauropods rather than reptiles. However, contrary to the assumptions of previous studies, the calculations of the Mainz scientists did not corroborate the hypothesis that the large dinosaurs would have laid a particularly large number of eggs. In terms of total eggs produced annually, this number could not have exceeded 200 to 400 eggs for a sauropod weighing 75 tons. Today’s large sea turtles are known to lay clutches in this range.