The 210-million-year-old Smok was crushing bones like a hyena

Coprolites, or fossil droppings, of the dinosaur-like archosaur Smok wawelski contain lots of chewed-up bone fragments. This led researchers at Uppsala University to conclude that this top predator was exploiting bones for salt and marrow, a behavior often linked to mammals but seldom to archosaurs.

Most predatory dinosaurs used their blade-like teeth to feed on the flesh of their prey, but they are commonly not thought to be much of bone crushers. The major exception is seen in the large tyrannosaurids, such as Tyrannosaurus rex, that roamed North America toward the end of the age of dinosaurs. The tyrannosaurids are thought to have been osteophagous (voluntarily exploiting bone) based on findings of bone-rich coprolites, bite-marked bones, and their robust teeth being commonly worn.

In a study published in Scientific Reports, researchers from Uppsala University were able to link ten large coprolites to Smok wawelski, a top predator of a Late Triassic (210 million year old) assemblage unearthed in Poland. This bipedal, 5-6 meters long animal lived some 140 million years before the tyrannosaurids of North America and had a T. rex-like appearance, although it is not fully clear whether it was a true dinosaur or a dinosaur-like precursor.

Three of the coprolites were scanned using synchrotron microtomography. This method has just recently been applied to coprolites and works somewhat like a CT scanner in a hospital, with the difference that the energy in the x-ray beams is much stronger. This makes it possible to visualize internal structures in fossils in three dimensions.

The coprolites were shown to contain up to 50 percent of bones from prey animals such as large amphibians and juvenile dicynodonts. Several crushed serrated teeth, probably belonging to the coprolite producer itself, were also found in the coprolites. This means that the teeth were repeatedly crushed against the hard food items (and involuntarily ingested) and replaced by new ones.

Further evidence for a bone-crushing behaviour can also be found in the fossils from the same bone beds in Poland. These include worn teeth and bone-rich fossil regurgitates from Smok wawelski, as well as numerous crushed or bite-marked bones.

Several of the anatomical characters related to osteophagy, such as a massive head and robust body, seem to be shared by S. wawelski and the tyrannosaurids, despite them being distantly related and living 140 million years apart. These large predators therefore seem to provide evidence of similar feeding adaptations being independently acquired at the beginning and end of the age of dinosaurs.


Story Source:

Materials provided by Uppsala UniversityNote: Content may be edited for style and length.

Reconstruction of trilobite ancestral range in the southern hemisphere

The first appearance of trilobites in the fossil record dates to 521 million years ago in the oceans of the Cambrian Period, when the continents were still inhospitable to most life forms. Few groups of animals adapted as successfully as trilobites, which were arthropods that lived on the seabed for 270 million years until the mass extinction at the end of the Permian approximately 252 million years ago.

The longer ago organisms lived, the more rare are their fossils and the harder it is to understand their way of life; paleontologists face a daunting task in endeavoring to establish evolutionary relationships in time and space.

Surmounting the difficulties inherent in the investigation of a group of animals that lived such a long time ago, Brazilian scientists affiliated with the Biology Department of São Paulo State University’s Bauru School of Sciences (FC-UNESP) and the Paleontology Laboratory of the University of São Paulo’s Ribeirão Preto School of Philosophy, Science and Letters (FFCLRP-USP) have succeeded for the first time in inferring paleobiogeographic patterns among trilobites.

Paleobiogeography is a branch of paleontology that focuses on the distribution of extinct plants and animals and their relations with ancient geographic features. The study was conducted by Fábio Augusto Carbonaro, a postdoctoral researcher at UNESP’s Bauru Macroinvertebrate Paleontology Laboratory (LAPALMA) headed by Professor Renato Pirani Ghilardi. Other participants included Max Cardoso Langer, a professor at FFCLRP-USP, and Silvio Shigueo Nihei, a professor at the same university’s Bioscience Institute (IB-USP).

The researchers analyzed the morphological differences and similarities of the 11 species of trilobites described so far in the genus Metacryphaeus; these trilobites lived during the Devonian between 416 million and 359 million years ago (mya) in the cold waters of the sea that covered what is now Bolivia, Peru, Brazil, the Malvinas (Falklands) and South Africa.

The Devonian Period is subdivided into seven stages. Metacryphaeus lived during the Lochkovian (419.2-410.8 mya) and Pragian (410.8- 407.6 mya) stages, which are the earliest Devonian stages.

The results of the research were published in Scientific Reportsand are part of the project “Paleobiogeography and migratory routes of paleoinvertebrates of the Devonian in Brazil,” which is supported by São Paulo Research Foundation -FAPESP and Brazil’s National Council for Scientific and Technological Development (CNPq). Ghilardi is the project’s principal investigator.

“When they became extinct in the Permian, 252 million years ago, the trilobites left no descendants. Their closest living relatives are shrimps, and, more remotely, spiders, scorpions, sea spiders and mites,” Ghilardi said.

Trilobite fossils are found abundantly all over the world, he explained — so abundantly that they are sometimes referred to as the cockroaches of the sea. The comparison is not unwarranted because anatomically, the trilobites resemble cockroaches. The difference is that they were not insects and had three longitudinal body segments or lobes (hence the name).

In the northern hemisphere, the trilobite fossil record is very rich. Paleontologists have so far described ten orders comprising over 17,000 species. The smallest were 1.5 millimeters long, while the largest were approximately 70 cm long and 40 cm wide. Perfectly preserved trilobites can be found in some regions, such as Morocco. These can be beautiful when used to create cameos or intaglio jewelry. Trilobite fossils from Brazil, Peru and Bolivia, in contrast, are often poorly preserved, consisting merely of the impressions left in benthic mud by their exoskeletons.

“Although their state of preservation is far from ideal, there are thousands of trilobite fossils in the sediments that form the Paraná basin in the South region of Brazil, and the Parnaíba basin along the North-Northeast divide,” said Ghilardi, who also chairs the Brazilian Paleontology Society.

According to Ghilardi, their poor state of preservation could be due to the geological conditions and climate prevailing in these regions during the Paleozoic Era, when the portions of dry land that would one day form South America were at the South Pole and entirely covered by ice for prolonged periods.

During the Devonian, South America and Africa were connected as part of the supercontinent Gondwana. South Africa was joined with Uruguay and Argentina in the River Plate region, and Brazil’s southern states were continuous with Namibia and Angola.

Parsimonious analysis

The research began with an analysis of 48 characteristics (size, shape and structure of organs and anatomical parts) found in some 50 fossil specimens of the 11 species of Metacryphaeus.

“In principle, these characteristics serve to establish their phylogeny — the evolutionary history of all species in the universe, analyzed in terms of lines of descent and relationships among broader groups,” Ghilardi said.

Known as a parsimonious analysis, this method is widely used to establish relationships among organisms in a given ecosystem, and in recent years, it has also begun to be used in the study of fossils.

According to Ghilardi, parsimony, in general, is the principle that the simplest explanation of the data is the preferred explanation. In the analysis of phylogeny, it means that the hypothesis regarding relationships that requires the smallest number of characteristic changes between the species analyzed (in this case, trilobites of the genus Metacryphaeus) is the one that is most likely to be correct.

The biogeographic contribution to the study was made by Professor Nihei, who works at IB-USP as a taxonomist and insect systematist. The field of systematics is concerned with evolutionary changes between ancestries, while taxonomy focuses on classifying and naming organisms.

“Biogeographic analysis typically involves living groups the ages of which are estimated by molecular phylogeny, or the so-called molecular clock, which estimates when two species probably diverged on the basis of the number of molecular differences in their DNA. In this study of trilobites, we used age in a similar manner, but it was obtained from the fossil record,” Nihei said.

“The main point of the study was to use fossils in a method that normally involves molecular biogeography. Very few studies of this type have previously involved fossils. I believe our study paves the way for a new approach based on biogeographic methods requiring a chronogram [a molecularly dated cladogram] because this chronogram can also be obtained from fossil taxa such as those studied by paleontologists, rather than molecular cladograms for living animals.”

As a vertebrate paleontologist who specializes in dinosaurs, Langer acknowledged that he knows little about trilobites but a great deal about the modern computational techniques used in parsimonious analysis, on which his participation in the study was based. “I believe the key aspect of this study, and the reason it was accepted for publication in as important a journal as Scientific Reports, is that it’s the first ever use of parsimony to understand the phylogeny of a trilobite genus in the southern hemisphere,” he said.

Gondwanan dispersal

The results of the paleobiogeographical analyses reinforce the pre-existing theory that Bolivia and Peru formed the ancestral home of Metacryphaeus.

“The models estimate a 100% probability that Bolivia and Peru formed the ancestral area of the Metacryphaeus clade and most of its internal clades,” Ghilardi said. Confirmation of the theory shows that parsimonious models have the power to suggest the presence of clades at a specific moment in the past even when there are no known physical records of that presence.

In the case of Metacryphaeus, the oldest records in Bolivia and Peru date from the early Pragian stage (410.8-407.6 mya), but the genus is believed to have evolved in the region during the Lochkovian stage (419.2-410.8 mya).

Parsimony, therefore, suggests Metacryphaeus originated in Bolivia and Peru some time before 410.8 mya but not earlier than 419.2 mya. In any event, it is believed to be far older than any known fossils.

According to Ghilardi, the results can be interpreted as showing that the adaptive radiation of Metacryphaeus to other areas of western Gondwana occurred during episodes of marine transgression in the Lochkovian-Pragian, when the sea flooded parts of Gondwana.

“The dispersal of Metacryphaeus trilobites during the Lochkovian occurred from Bolivia and Peru to Brazil — to the Paraná basin, now in the South region, and the Parnaíba basin, on the North-Northeast divide — and on toward the Malvinas/Falklands, while the Pragian dispersal occurred toward South Africa,” he said.

Fossil trilobites have been found continuously in the Paraná basin in recent decades. Trilobites collected in the late nineteenth century in the Parnaíba basin were held by Brazil’s National Museum in Rio de Janeiro, which was destroyed by fire in September 2018.

“These fossils haven’t yet been found under the rubble and it’s likely that nothing is left of them. They were mere shell impressions left in the ancient seabed. Even in petrified form, they must have dissolved in the blaze,” Ghilardi said.


Story Source:

Materials provided by Fundação de Amparo à Pesquisa do Estado de São Paulo. Original written by Peter Moon. Note: Content may be edited for style and length.

Fossils suggest flowers originated 50 million years earlier than thought

Scientists have described a fossil plant species that suggests flowers bloomed in the Early Jurassic, more than 174 million years ago, according to new research in the open-access journal eLife.

Before now, angiosperms (flowering plants) were thought to have a history of no more than 130 million years. The discovery of the novel flower species, which the study authors named Nanjinganthus dendrostyla, throws widely accepted theories of plant evolution into question, by suggesting that they existed around 50 million years earlier. Nanjinganthus also has a variety of ‘unexpected’ characteristics according to almost all of these theories.

Angiosperms are an important member of the plant kingdom, and their origin has been the topic of long-standing debate among evolutionary biologists. Many previously thought angiosperms could be no more than 130 million years old. However, molecular clocks have indicated that they must be older than this. Until now, there has been no convincing fossil-based evidence to prove that they existed further back in time.

“Researchers were not certain where and how flowers came into existence because it seems that many flowers just popped up in the Cretaceous from nowhere,” explains lead author Qiang Fu, Associate Research Professor at the Nanjing Institute of Geology and Paleontology, China. “Studying fossil flowers, especially those from earlier geologic periods, is the only reliable way to get an answer to these questions.”

The team studied 264 specimens of 198 individual flowers preserved on 34 rock slabs from the South Xiangshan Formation — an outcrop of rocks in the Nanjing region of China renowned for bearing fossils from the Early Jurassic epoch. The abundance of fossil samples used in the study allowed the researchers to dissect some of them and study them with sophisticated microscopy, providing high-resolution pictures of the flowers from different angles and magnifications. They then used this detailed information about the shape and structure of the different fossil flowers to reconstruct the features of Nanjinganthus dendrostyla.

The key feature of an angiosperm is ‘angio-ovuly’ — the presence of fully enclosed ovules, which are precursors of seeds before pollination. In the current study, the reconstructed flower was found to have a cup-form receptacle and ovarian roof that together enclose the ovules/seeds. This was a crucial discovery, because the presence of this feature confirmed the flower’s status as an angiosperm. Although there have been reports of angiosperms from the Middle-Late Jurassic epochs in northeastern China, there are structural features of Nanjinganthus that distinguish it from these other specimens and suggest that it is a new genus of angiosperms.

Having made this discovery, the team now wants to understand whether angiosperms are either monophyletic — which would mean Nanjinganthus represents a stem group giving rise to all later species — or polyphyletic, whereby Nanjinganthus represents an evolutionary dead end and has little to do with many later species.

“The origin of angiosperms has long been an academic ‘headache’ for many botanists,” concludes senior author Xin Wang, Research Professor at the Nanjing Institute of Geology and Paleontology. “Our discovery has moved the botany field forward and will allow a better understanding of angiosperms, which in turn will enhance our ability to efficiently use and look after our planet’s plant-based resources.”


Story Source:

Materials provided by eLifeNote: Content may be edited for style and length.

New discovery pushes origin of feathers back by 70 million years

An international team of palaeontologists, which includes the University of Bristol, has discovered that the flying reptiles, pterosaurs, actually had four kinds of feathers, and these are shared with dinosaurs — pushing back the origin of feathers by some 70 million years.

Pterosaurs are the flying reptiles that lived side by side with dinosaurs, 230 to 66 million years ago. It has long been known that pterosaurs had some sort of furry covering often called ‘pycnofibres’, and it was presumed that it was fundamentally different to feathers of dinosaurs and birds.

In a new work published today in the journal Nature Ecology & Evolution, a team from Nanjing, Bristol, Cork, Beijing, Dublin, and Hong Kong show that pterosaurs had at least four types of feathers:

  • simple filaments (‘hairs’)
  • bundles of filaments,
  • filaments with a tuft halfway down
  • down feathers.

These four types are now also known from two major groups of dinosaurs — the ornithischians, which were plant-eaters, and the theropods, which include the ancestors of birds.

Baoyu Jiang of Nanjing University, who led the research, said: “We went to Inner Mongolia to do fieldwork in the Daohugou Formation.

“We already knew that the sites had produced excellent specimens of pterosaurs with their pycnofibres preserved and I was sure we could learn more by careful study.”

Zixiao Yang, also of Nanjing University, has studied the Daohugou localities and the pterosaurs as part of his PhD work. He said: “This was a fantastic opportunity to work on some amazing fossils.

“I was able to explore every corner of the specimens using high-powered microscopes, and we found many examples of all four feathers.”

Maria McNamara of University College Cork, added: “Some critics have suggested that actually there is only one simple type of pycnofibre, but our studies show the different feather types are real.

“We focused on clear areas where the feathers did not overlap and where we could see their structure clearly. They even show fine details of melanosomes, which may have given the fluffy feathers a ginger colour.”

Professor Mike Benton from the University of Bristol’s School of Earth Sciences, said: “We ran some evolutionary analyses and they showed clearly that the pterosaur pycnofibres are feathers, just like those seen in modern birds and across various dinosaur groups.

“Despite careful searching, we couldn’t find any anatomical evidence that the four pycnofibre types are in any way different from the feathers of birds and dinosaurs. Therefore, because they are the same, they must share an evolutionary origin, and that was about 250 million years ago, long before the origin of birds.”

Birds have two types of advanced feathers used in flight and for body smoothing, the contour feathers with a hollow quill and barbs down both sides.

These are found only in birds and the theropod dinosaurs close to bird origins. But the other feather types of modern birds include monofilaments and down feathers, and these are seen much more widely across dinosaurs and pterosaurs.

The armoured dinosaurs and the giant sauropods probably did not have feathers, but they were likely suppressed, meaning they were prevented from growing, at least in the adults, just as hair is suppressed in whales, elephants, and hippos. Pigs are a classic example, where the piglets are covered with hair like little puppies, and then, as they grow, the hair growth is suppressed.

Professor Benton added: “This discovery has amazing implications for our understanding of the origin of feathers, but also for a major time of revolution of life on land.

“When feathers arose, about 250 million years ago, life was recovering from the devasting end-Permian mass extinction.

“Independent evidence shows that land vertebrates, including the ancestors of mammals and dinosaurs, had switched gait from sprawling to upright, had acquired different degrees of warm-bloodedness, and were generally living life at a faster pace.

“The mammal ancestors by then had hair, so likely the pterosaurs, dinosaurs and relatives had also acquired feathers to help insulate them.

“The hunt for feathers in fossils is heating up and finding their functions in such early forms is imperative. It can rewrite our understanding of a major revolution in life on Earth during the Triassic, and also our understanding of the genomic regulation of feathers, scales, and hairs in the skin.”


Story Source:

Materials provided by University of BristolNote: Content may be edited for style and length.

‘Treasure trove’ of dinosaur footprints found in southern England

More than 85 well-preserved dinosaur footprints — made by at least seven different species — have been uncovered in East Sussex, representing the most diverse and detailed collection of these trace fossils from the Cretaceous Period found in the UK to date.

The footprints were identified by University of Cambridge researchers between 2014 and 2018, following periods of coastal erosion along the cliffs near Hastings. Many of the footprints — which range in size from less than 2 cm to over 60 cm across — are so well-preserved that fine detail of skin, scales and claws is easily visible.

The footprints date from the Lower Cretaceous epoch, between 145 and 100 million years ago, with prints from herbivores including IguanodonAnkylosaurus, a species of stegosaur, and possible examples from the sauropod group (which included Diplodocus and Brontosaurus); as well as meat-eating theropods. The results are reported in the journal Palaeogeography, Palaeoclimatology, Palaeoecology.

Over the past 160 years, there have been sporadic reports of fossilised dinosaur footprints along the Sussex coast, but no new major discoveries have been described for the past quarter century and the earlier findings were far less varied and detailed than those described in the current research.

The area around Hastings is one of the richest in the UK for dinosaur fossils, including the first known Iguanodon in 1825, and the first confirmed example of fossilised dinosaur brain tissue in 2016. However, trace fossils such as footprints, which can help scientists learn more about the composition of dinosaur communities, are less common in the area.

“Whole body fossils of dinosaurs are incredibly rare,” said Anthony Shillito, a PhD student in Cambridge’s Department of Earth Sciences and the paper’s first author. “Usually you only get small pieces, which don’t tell you a lot about how that dinosaur may have lived. A collection of footprints like this helps you fill in some of the gaps and infer things about which dinosaurs were living in the same place at the same time.”

The footprints described in the current study, which Shillito co-authored with Dr Neil Davies, were uncovered during the past four winters, when strong storms and storm surges led to periods of collapse of the sandstone and mudstone cliffs.

In the Cretaceous Period, the area where the footprints were found was likely near a water source, and in addition to the footprints, a number of fossilised plants and invertebrates were also found.

“To preserve footprints, you need the right type of environment,” said Davies. “The ground needs to be ‘sticky’ enough so that the footprint leaves a mark, but not so wet that it gets washed away. You need that balance in order to capture and preserve them.”

“As well as the large abundance and diversity of these prints, we also see absolutely incredible detail,” said Shillito. “You can clearly see the texture of the skin and scales, as well as four-toed claw marks, which are extremely rare.

“You can get some idea about which dinosaurs made them from the shape of the footprints — comparing them with what we know about dinosaur feet from other fossils lets you identify the important similarities. When you also look at footprints from other locations you can start to piece together which species were the key players.”

As part of his research, Shillito is studying how dinosaurs may have affected the flows of rivers. In modern times, large animals such as hippopotamuses or cows can create small channels, diverting some of the river’s flow.

“Given the sheer size of many dinosaurs, it’s highly likely that they affected rivers in a similar way, but it’s difficult to find a ‘smoking gun’, since most footprints would have just washed away,” said Shillito. “However, we do see some smaller-scale evidence of their impact; in some of the deeper footprints you can see thickets of plants that were growing. We also found evidence of footprints along the banks of river channels, so it’s possible that dinosaurs played a role in creating those channels.”

It’s likely that there are many more dinosaur footprints hidden within the eroding sandstone cliffs of East Sussex, but the construction of sea defences in the area to slow or prevent the process of coastal erosion may mean that they remained locked within the rock.

The research was funded by the Natural Environment Research Council (NERC).


Story Source:

Materials provided by University of Cambridge. The original story is licensed under a Creative Commons LicenseNote: Content may be edited for style and length.

Biggest mass extinction caused by global warming leaving ocean animals gasping for breath

The largest extinction in Earth’s history marked the end of the Permian period, some 252 million years ago. Long before dinosaurs, our planet was populated with plants and animals that were mostly obliterated after a series of massive volcanic eruptions in Siberia.

Fossils in ancient seafloor rocks display a thriving and diverse marine ecosystem, then a swath of corpses. Some 96 percent of marine species were wiped out during the “Great Dying,” followed by millions of years when life had to multiply and diversify once more.

What has been debated until now is exactly what made the oceans inhospitable to life — the high acidity of the water, metal and sulfide poisoning, a complete lack of oxygen, or simply higher temperatures.

New research from the University of Washington and Stanford University combines models of ocean conditions and animal metabolism with published lab data and paleoceanographic records to show that the Permian mass extinction in the oceans was caused by global warming that left animals unable to breathe. As temperatures rose and the metabolism of marine animals sped up, the warmer waters could not hold enough oxygen for them to survive.

The study is published in the Dec. 7 issue of Science.

“This is the first time that we have made a mechanistic prediction about what caused the extinction that can be directly tested with the fossil record, which then allows us to make predictions about the causes of extinction in the future,” said first author Justin Penn, a UW doctoral student in oceanography.

Researchers ran a climate model with Earth’s configuration during the Permian, when the land masses were combined in the supercontinent of Pangaea. Before ongoing volcanic eruptions in Siberia created a greenhouse-gas planet, oceans had temperatures and oxygen levels similar to today’s. The researchers then raised greenhouse gases in the model to the level required to make tropical ocean temperatures at the surface some 10 degrees Celsius (20 degrees Fahrenheit) higher, matching conditions at that time.

The model reproduces the resulting dramatic changes in the oceans. Oceans lost about 80 percent of their oxygen. About half the oceans’ seafloor, mostly at deeper depths, became completely oxygen-free.

To analyze the effects on marine species, the researchers considered the varying oxygen and temperature sensitivities of 61 modern marine species — including crustaceans, fish, shellfish, corals and sharks — using published lab measurements. The tolerance of modern animals to high temperature and low oxygen is expected to be similar to Permian animals because they had evolved under similar environmental conditions. The researchers then combined the species’ traits with the paleoclimate simulations to predict the geography of the extinction.

“Very few marine organisms stayed in the same habitats they were living in — it was either flee or perish,” said second author Curtis Deutsch, a UW associate professor of oceanography.

The model shows the hardest hit were organisms most sensitive to oxygen found far from the tropics. Many species that lived in the tropics also went extinct in the model, but it predicts that high-latitude species, especially those with high oxygen demands, were nearly completely wiped out.

To test this prediction, co-authors Jonathan Payne and Erik Sperling at Stanford analyzed late-Permian fossil distributions from the Paleoceanography Database, a virtual archive of published fossil collections. The fossil record shows where species were before the extinction, and which were wiped out completely or restricted to a fraction of their former habitat.

The fossil record confirms that species far from the equator suffered most during the event.

“The signature of that kill mechanism, climate warming and oxygen loss, is this geographic pattern that’s predicted by the model and then discovered in the fossils,” Penn said. “The agreement between the two indicates this mechanism of climate warming and oxygen loss was a primary cause of the extinction.”

The study builds on previous work led by Deutsch showing that as oceans warm, marine animals’ metabolism speeds up, meaning they require more oxygen, while warmer water holds less. That earlier study shows how warmer oceans push animals away from the tropics.

The new study combines the changing ocean conditions with various animals’ metabolic needs at different temperatures. Results show that the most severe effects of oxygen deprivation are for species living near the poles.

“Since tropical organisms’ metabolisms were already adapted to fairly warm, lower-oxygen conditions, they could move away from the tropics and find the same conditions somewhere else,” Deutsch said. “But if an organism was adapted for a cold, oxygen-rich environment, then those conditions ceased to exist in the shallow oceans.”

The so-called “dead zones” that are completely devoid of oxygen were mostly below depths where species were living, and played a smaller role in the survival rates. “At the end of the day, it turned out that the size of the dead zones really doesn’t seem to be the key thing for the extinction,” Deutsch said. “We often think about anoxia, the complete lack of oxygen, as the condition you need to get widespread uninhabitability. But when you look at the tolerance for low oxygen, most organisms can be excluded from seawater at oxygen levels that aren’t anywhere close to anoxic.”

Warming leading to insufficient oxygen explains more than half of the marine diversity losses. The authors say that other changes, such as acidification or shifts in the productivity of photosynthetic organisms, likely acted as additional causes.

The situation in the late Permian — increasing greenhouse gases in the atmosphere that create warmer temperatures on Earth — is similar to today.

“Under a business-as-usual emissions scenarios, by 2100 warming in the upper ocean will have approached 20 percent of warming in the late Permian, and by the year 2300 it will reach between 35 and 50 percent,” Penn said. “This study highlights the potential for a mass extinction arising from a similar mechanism under anthropogenic climate change.”

Story Source:

Materials provided by University of Washington. Original written by Hannah Hickey. Note: Content may be edited for style and length.

Journal Reference:

Justin L. Penn, Curtis Deutsch, Jonathan L. Payne, Erik A. Sperling. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science, 2018 DOI: 10.1126/science.aat1327

The whole of Africa was the cradle of humankind

A team of scientists led by Mohamed Sahnouni, archaeologist at the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), has just published a paper in the journal Science which breaks with the paradigm that the cradle of Humankind lies in East Africa, based on the archaeological remains found at sites in the region of Ain Hanech (Algeria), the oldest currently known in the north of Africa.

For a long time, East Africa has been considered the place of origin of the earliest hominins and lithic technology, because up to now, very little was known about the first hominin occupation and activities in the north of the continent. Two decades of field and laboratory research directed by Dr. Sahnouni have shown that ancestral hominins actually made stone tools in North Africa that are near contemporary with the earliest known stone tools in East Africa dated to 2.6 million years.

These are stone artifacts and animal bones bearing marks of cutting by stone tools, with an estimated chronology of 2.4 and 1.9 million years, respectively, found at two levels at the sites of Ain Boucherit (within the Ain Hanech study area), which were dated using Paleomagnetism, Electron Spin Resonance (ESR), and the Biochronology of large mammals excavated together with the archaeological materials.

Fossils of animals such as pigs, horses and elephants, from very ancient sites, have been used by the paleontologist Jan van der Made, of the Museo Nacional de Ciencias Naturales in Madrid, to corroborate the ages yielded by Paleomagnetism, obtained by the CENIEH geochronologist Josep Parés, and ESR, found by Mathieu Duval, of Griffith University.

Oldowan technology

The artifacts of Ain Boucherit were manufactured of locally available limestone and flint and include faces worked into choppers, polyhedra and subspheroids, as well as sharp-edged cutting tools used to process animal carcasses. These artifacts are typical of the Oldowan stone technology known from 2.6-1.9 million-year-old sites in East Africa, although those from Ain Boucherit show subtle variations.

“The lithic industry of Ain Boucherit, which is technologically similar to that of Gona and Olduvai, shows that our ancestors ventured into all corners of Africa, not just East Africa. The evidence from Algeria changes the earlier view that East Africa was the cradle of Humankind. Actually, the whole of Africa was the cradle of humankind,” states Sahnouni, leader of the Ain Hanech project.

Not mere scavengers

Ain Boucherit is one of the few archaeological sites in Africa which has provided evidence of bones with associated marks of cutting and percussion in situ with stone tools, which shows unmistakably that these ancestral hominins exploited meat and marrow from animals of all sizes and skeletal parts, which implied skinning, evisceration and defleshing of upper and intermediate extremities.

Isabel Cáceres, taphonomist at the IPHES, has commented that “the effective use of sharp-edged tools at Ain Boucherit suggests that our ancestors were not mere scavengers. It is not clear at this moment whether they hunted, but the evidence clearly shows that they were successfully competing with carnivores and enjoyed first access to animal carcasses.”

The tool-makers

At this moment, the most important question is who made the stone tools discovered in Algeria. Hominin remains have still not been found in North Africa which are contemporary with the earliest stone artifacts. As a matter of fact, nor have any hominins yet been documented in direct association with the first stone tools known from East Africa.

Nevertheless, a recent discovery in Ethiopia has shown the presence of early Homo dated to 2.8 million years, most likely the best candidate also for the materials from East and North Africa.

Scientists thought for a long time that the hominins and their material culture originated in the Great Rift Valley in East Africa. Surprisingly, the earliest known hominin, dated to 7.0 million years, and the 3.3 million years Australopithecus bahrelghazali, have been discovered in Chad, in the Sahara, 3000 km from the rift valleys in the east of Africa.

As Sileshi Semaw, scientist at the CENIEH and a co-author of this paper, explains that the hominins contemporary with Lucy (3.2 million years), were probably roamed over the Sahara, and their descendants might have been responsible for leaving these archaeological puzzles now discovered in Algeria, that are near contemporaries of those of East Africa.

“Future research will focus on searching for human fossils in the nearby Miocene and Plio-Pleistocene deposits, looking for the tool-makers and even older stone tools,” concludes Sahnouni.

Story Source:

Materials provided by Centro Nacional de Investigación sobre la Evolución Humana (CENIEH). Note: Content may be edited for style and length.

Oldest-known ancestor of modern primates may have come from North America, not Asia

About 56 million years ago, on an Earth so warm that palm trees graced the Arctic Circle, a mouse-sized primate known as Teilhardina first curled its fingers around a branch.

The earliest-known ancestor of modern primates, Teilhardina’s close relatives would eventually give rise to today’s monkeys, apes and humans. But one of the persistent mysteries about this distant cousin of ours is where it originated.

Teilhardina (ty-hahr-DEE’-nuh) species quickly spread across the forests of Asia, Europe and North America, a range unparalleled by all other primates except humans. But where did its journey begin?

New research shows that Teilhardina brandti, a species found in Wyoming, is as old or older than its Asian and European relatives, upending the prevailing hypothesis that Teilhardina first appeared in China.

Teilhardina’s origins, however, remain a riddle.

“The scientific conclusion is ‘We just don’t know,'” said Paul Morse, the study’s lead author and a recent University of Florida doctoral graduate. “While the fossils we’ve found potentially overturn past hypotheses of where Teilhardina came from and where it migrated, they definitely don’t offer a clearer scenario.”

What is clear, Morse said, is that T. brandti had a wide variety of features, some of which are as primitive as those found in Teilhardina asiatica, its Asian cousin, previously thought to be the oldest species in the genus.

To make this determination, Morse studied 163 teeth and jaws in the most comprehensive analysis of T. brandti to date.

Teeth contain a treasure-trove of information and often preserve better than bone, thanks to their tough enamel. They can reveal clues about an animal’s evolutionary past, its size, diet and age as an individual and in geological time.

Primate teeth have particularly distinct structures that are immediately recognizable to the trained eye, said Jonathan Bloch, study co-author and curator of vertebrate paleontology at the Florida Museum of Natural History.

“Identifying differences between primate teeth is not so different from a biker recognizing that a Harley is different from a scooter or an art critic evaluating whether an image was created by Picasso or Banksy,” he said. “In detail, they are very different from each other in specific, predictable ways.”

While Teilhardina bones are very rare in the fossil record, its teeth are more plentiful — if you know how to find them. Bloch’s team of paleontologists, Morse included, have spent years combing the surface of Wyoming’s Bighorn Basin on hands and knees and then packing out 50-pound bags of soil to a river to screen wash. The remaining bits of bones and teeth — which can be smaller than a flea — are examined under a microscope back at the museum.

This painstaking search has built up the dental record of T. brandti from a single molar — used to first describe the species in 1993 — to hundreds of teeth, providing a broad look at the primate’s population-level variation.

Still, Morse and Bloch were unprepared for the peculiar variation exhibited by specimen UF 333700, a jagged piece of jaw with T. brandti teeth.

“Jon and I started arguing about the alveoli” — empty tooth sockets — “and how they didn’t look right at all,” said Morse, now a postdoctoral researcher at Duke University. “By the end of the day, we realized that specimen completely overturned both the species definition of T. asiatica and part of the rationale for why it is the oldest Teilhardina species.”

Studies based on a small number of teeth simply missed the diversity in Teilhardina’s physical characteristics, Morse said.

“There’s likely a tremendous amount of variation in the fossil record, but it’s extremely difficult to capture and measure when you have a small sample size,” he said. “That’s one of the reasons collecting additional fossils is so important.”

The analysis also reshuffled the Teilhardina family tree, reducing the number of described species from nine to six and reclassifying two species as members of a new genus, Bownonomys, named for prominent vertebrate paleontologist Thomas Bown.

But the precise ages of Teilhardina species are still impossible to pinpoint and may remain that way.

Teilhardina appeared during the geological equivalent of a flash in the pan, a brief 200,000-year period known as the Paleocene-Eocene Thermal Maximum, or PETM. This era was characterized by a massive injection of carbon into the Earth’s atmosphere, which sent global temperatures soaring. Sea levels surged by 220 feet, ecosystems were overhauled and the waters at the North Pole warmed to 74 degrees.

Scientists can use the distinct carbon signature of the PETM to locate this period in the rock record, and carbon isotopes in teeth can also be used to identify fossil animals from the era.

But among Teilhardina fossil sites across the globe, only Wyoming has the uninterrupted, neatly demarcated layers of rock that allow paleontologists to hone in on more precise dates.

“The humblest statement would be to say that these species are essentially equivalent in age,” Bloch said. “Determining which came earlier in the PETM probably surpasses the level of resolution we have in the rock record. But what we can say is that the only place where you can really establish where Teilhardina appears in this climate event with confidence is in the Bighorn Basin.”

As the Earth warmed, plants and animals expanded their ranges northward, returning south as temperatures cooled at the end of the PETM.

“This dance of plants and animals with climate change happened over vast landscapes, with forests moving from the Gulf Coast to the Rocky Mountains in just a few thousand years,” Bloch said.

Teilhardina likely tracked the shifts in its forest habitats across the land bridges that then connected North America, Greenland and Eurasia, he said.

“Teilhardina is not throwing its bag over its shoulder and walking,” he said. “Its range is shifting from one generation to the next. Over 1,000 years, you get a lot of movement, and over 2,000-3,000 years, you could easily cover continental distances.”

While it was well-suited to Earth’s hothouse environment, Teilhardina disappeared with the PETM, replaced by new and physically distinct primates. It’s a sobering reminder of what can happen to species — including humans — during periods of swift climatic changes, Bloch said.

“A changing planet has dramatic effects on biology, ecosystems and evolution. It’s part of the process that has produced the diversity of life we see today and mass extinctions of life that have happened periodically in Earth’s history,” Bloch said. “One of the unexpected results of global warming 56 million years ago is that it marks the origin of the group that ultimately led to us. How we will fare under future warming scenarios is less certain.”

Story Source:

Materials provided by Florida Museum of Natural History. Note: Content may be edited for style and length.

Fossil algae reveal 500 million years of climate change

Earth scientists are able to travel far back in time to reconstruct the geological past and paleoclimate to make better predictions about future climate conditions. Scientists at the Netherlands Institute for Sea Research (NIOZ) and Utrecht University succeeded in developing a new indicator (proxy) of ancient CO2-levels, using the organic molecule phytane, a debris product of chlorophyll. This new organic proxy not only provides the most continuous record of CO2-concentrations ever, it also breaks a record in its time span, covering half a billion years. The data show the present idea that rises in CO2-levels that used to take millions of years, are now happening in a century. These findings are published in Science Advances on November 28th.

As CO2 increases today, it’s vital to understand what impact these changes will have. To better predict the future, we must understand long-term changes in CO2 over geologic history. Direct measurements of past CO2 are available, e.g. bubbles in ice cores containing ancient gases. However, ice cores have a limited time span of one million years. To go farther back in time, earth scientists have developed various indirect measurements of CO2 from proxies e.g. from algae, leaves, ancient soils and chemicals stored in ancient sediments to reconstruct past environmental conditions.

Phytane, a new way to travel in time

A new proxy, using a degradation product of chlorophyll, allows geochemists to infer a continuous record of historic CO2-levels in deep time. Scientists at NIOZ have recently developed phytane as a promising new organic proxy that uncovers half a billion years of CO2-levels in the oceans, from the Cambrian until recent times.

Using the new proxy, they were able to make the most continuous record of ancient carbon dioxide levels ever. “We developed and validated a new way to time travel — going farther back in time and to more places,” says NIOZ-scientist Caitlyn Witkowski. “With phytane, we now have the longest CO2-record with one single marine proxy. This new data is invaluable to modelers who can now more accurately make predictions of the future.”

Witkowski and colleagues selected more than 300 samples of marine sediments from deep sea cores and oils from all over the globe, reflecting the majority of geological periods in the last 500 million years.

Fossil molecules

Past chemical reactions can be ‘stored’ in fossil molecules, and so they may reflect various ancient environmental conditions. Geochemists are able to ‘read’ these conditions, such as seawater temperature, pH, salinity and CO2-levels. Organic matter, such as phytane, reflects the pressure of CO2 in ocean water or the atmosphere (pCO2).

Little green miracles

Although all organic matter has the potential to reflect CO2, phytane is special. Phytane is the pigment responsible for our green world. Anything that uses photosynthesis to absorb sunlight, including plants, algae, and some species of bacteria, has chlorophyll from which phytane comes. Plants and algae take in CO2 and produce oxygen. Without these little green miracles, our world just wouldn’t be the same.

Because chlorophyll is found all around the world, phytane is also everywhere and is a major constituent of decayed and fossilized biomass. “Phytane doesn’t chemically change over the course of time, even if it is millions of years old,” Witkowski says.

Carbon isotope fractionation

CO2 of the past is estimated from organic matter, such as phytane, through the phenomenon of carbon isotope fractionation during photosynthesis. When taking up CO2, plants and algae prefer the light carbon isotope (12C) over the heavy carbon isotope (13C). They only use the heavy carbon isotope when CO2-levels in the surrounding water or atmosphere are low. The proportion between these two isotopes therefore reflects the level of carbon dioxide in the environment at the moment of growth.

This also explains why Witkowski didn’t use terrestrial plants as a source for her research, exclusively using phytane from (fossilized) marine sources. The plant world is divided into so-called C3- and C4-plants, each with their own unique ratio of light-to-heavy carbon. Phytoplankton all have very similar ratios compared to their plant counterparts. Witkowski: “By choosing only marine sources, we could limit uncertainty of the phytane source in the dataset.”

“In our data, we see high levels of carbon dioxide, reaching 1000 ppm as opposed to today’s 410 ppm. In this respect, present day levels are not unique, but the speed of these changes have never been seen before. Changes that typically take millions of years are now happening in a century. This additional CO2-data may help us understand the future of our planet.” In future research, phytane can be used to go even further back in time than the Phanerozoic, the earliest found in two billion-year-old samples.

Story Source:

Materials provided by Royal Netherlands Institute for Sea Research. Note: Content may be edited for style and length.

Gigantic mammal ‘cousin’ discovered

During the Triassic period (252-201 million years ago) mammal-like reptiles called therapsids co-existed with ancestors to dinosaurs, crocodiles, mammals, pterosaurs, turtles, frogs, and lizards. One group of therapsids are the dicynodonts. Researchers at Uppsala University in Sweden, together with colleagues in Poland, have discovered fossils from a new genus of gigantic dicynodont. The new species Lisowicia bojani is described in the journal Science.

The earth is about 4.5 billion years old and has gone through many geological periods and dramatic change. During the Triassic period, about 252-201 million years ago, all land on Earth came together and formed the massive continent called Pangea. During this time, the first dinosaurs came into being as well as ancestors to crocodiles, mammals, pterosaurs, turtles, frogs, and lizards. Recently, scientists have become interested in another type of animal, therapsids. Therapsids were “mammal-like” reptiles and are ancestors to the mammals, including humans, found today. One group of therapsids is called dicynodonts. All species of dicynodonts were herbivores (plant eaters) and their sizes ranged from small burrowers to large browsers. Most of them were also toothless. They survived the Permian mass extinction and became the dominant terrestrial herbivores in the Middle and Late Triassic. They were thought to have died out before the dinosaurs became the dominant form of tetrapod on land.

For the first time, researchers in the research programme Evolution and Development at Uppsala University in collaboration with researchers at the Polish Academy of Sciences (Warsaw), have discovered fossils from a new species of dicynodont in the Polish village of Lisowice. The species was named Lisowicia bojani after the village and a German comparative anatomist named Ludwig Heinrich Bojanus who worked in Vilnius and is known for making several important anatomical discoveries. The findings show that the Lisowicia was about the size of a modern-day elephant, about 4.5 metres long, 2.6 metres high and weighed approximately 9 tons, which is 40 percent larger than any previously identified dicynodont. Analysis of the limb bones showed that they had a fast growth, much like a mammal or a dinosaur. It lived during the Late Triassic, about 210-205 million years ago, about 10 million years later than previous findings of dicynodonts.

“The discovery of Lisowicia changes our ideas about the latest history of dicynodonts, mammal Triassic relatives. It also raises far more questions about what really make them and dinosaurs so large,” says Dr Tomasz Sulej, Polish Academy of Sciences.

“Dicynodonts were amazingly successful animals in the Middle and Late Triassic. Lisowicia is the youngest dicynodont and the largest non-dinosaurian terrestrial tetrapod from the Triassic. It’s natural to want to know how dicynodonts became so large. Lisowicia is hugely exciting because it blows holes in many of our classic ideas of Triassic ‘mammal-like reptiles’,” says Dr Grzegorz Niedzwiedzki, Uppsala University.

The first findings of fossils from Lisowice in Poland were made in 2005 by Robert Borz?cki and Piotr Menducki. Since then, more than 1,000 bones and bone fragments have been collected from the area, including fossils from Lisowicia. The area is thought to have been a river deposit during the Late Triassic period.

The discovery of Lisowicia provides the first evidence that mammal-like elephant sized dicynodonts were present at the same time as the more well-known long-necked sauropodomorph dinosaurs, contrary to previous belief. Sauropodomorphs include species like the Diplodocus or Brachiosaurus. It fills a gap in the fossil record of dicynodonts and it shows that some anatomical features of limbs thought to characterize large mammals or dinosaurs evolved also in the non-mammalian synapsid. Finally, these findings from Poland are the first substantial finds of dicynodonts from the Late Triassic in Europe.

“The discovery of such an important new species is a once in a lifetime discovery,” says Dr Tomasz Sulej.

Story Source:

Materials provided by Uppsala University. Note: Content may be edited for style and length.