Feathered dinosaurs were even fluffier than we thought
A University of Bristol-led study has revealed new details about dinosaur feathers and enabled scientists to further refine what is potentially the most accurate depiction of any dinosaur species to date.
Birds are the direct descendants of a group of feathered, carnivorous dinosaurs that, along with true birds, are referred to as paravians — examples of which include the infamous Velociraptor.
Researchers examined, at high resolution, an exceptionally-preserved fossil of the crow-sized paravian dinosaur Anchiornis — comparing its fossilised feathers to those of other dinosaurs and extinct birds.
The feathers around the body of Anchiornis, known as contour feathers, revealed a newly-described, extinct, primitive feather form consisting of a short quill with long, independent, flexible barbs erupting from the quill at low angles to form two vanes and a forked feather shape.
The observations were made possible by decay processes that separated some of these feathers from the body prior to burial and fossilisation, making their structure easier to interpret.
Such feathers would have given Anchiornis a fluffy appearance relative to the streamlined bodies of modern flying birds, whose feathers have tightly-zipped vanes forming continuous surfaces. Anchiornis’s unzipped feathers might have affected the animal’s ability to control its temperature and repel water, possibly being less effective than the vanes of most modern feathers. This shaggy plumage would also have increased drag when Anchiornis glided.
Additionally, the feathers on the wing of Anchiornis lack the aerodynamic, asymmetrical vanes of modern flight feathers, and the new research shows that these vanes were also not tightly-zipped compared to modern flight feathers. This would have hindered the feather’s ability to form a lift surface. To compensate, paravians like Anchiornis packed multiple rows of long feathers into the wing, unlike modern birds, where most of the wing surface is formed by just one row of feathers.
Furthermore, Anchiornis and other paravians had four wings, with long feathers on the legs in addition to the arms, as well as elongated feathers forming a fringe around the tail. This increase in surface-area likely allowed for gliding before the evolution of powered flight.
To assist in reconstructing the updated look of Anchiornis, scientific illustrator Rebecca Gelernter worked with Evan Saitta and Dr Jakob Vinther, from the University of Bristol’s School of Earth Sciences and School of Biological Sciences, to draw the animal as it was in life.
The new piece represents a radical shift in dinosaur depictions and incorporates previous research.
The color patterns for Anchiornis are known from fossilised pigment studies, the outline of the flesh of the animal has been constructed by examining fossils under laser fluorescence, and previous work has described the multi-tiered layering of the wing feathers.
Evan Saitta said: “The novel aspects of the wing and contour feathers, as well as fully-feathered hands and feet, are added to the depiction.
“Most provocatively, Anchiornis is presented in this artwork climbing in the manner of hoatzin chicks, the only living bird whose juveniles retain a relic of their dinosaurian past, a functional claw.
“This contrasts much previous art that places paravians perched on top of branches like modern birds.
“However, such perching is unlikely given the lack of a reversed toe as in modern perching birds and climbing is consistent with the well-developed arms and claws in paravians.
“Overall, our study provides some new insight into the appearance of dinosaurs, their behavior and physiology, and the evolution of feathers, birds, and powered flight.”
Rebecca Gelernter added: “Paleoart is a weird blend of strict anatomical drawing, wildlife art, and speculative biology. The goal is to depict extinct animals and plants as accurately as possible given the available data and knowledge of the subject’s closest living relatives.
“As a result of this study and other recent work, this is now possible to an unprecedented degree for Anchiornis. It’s easy to see it as a living animal with complex behaviours, not just a flattened fossil.
“It’s really exciting to be able to work with the scientists at the forefront of these discoveries, and to show others what we believe these fluffy, toothy almost-birds looked like as they went about their Jurassic business.”
Story Source:
Materials provided by University of Bristol. Note: Content may be edited for style and length.
Bryozoans: Fossil fills missing evolutionary link
Lurking in oceans, rivers and lakes around the world are tiny, ancient animals known to few people. Bryozoans, tiny marine creatures that live in colonies, are “living fossils” — their lineage goes back to the time when multi-celled life was a newfangled concept. But until now, scientists were missing evidence of one important breakthrough that helped the bryozoans survive 500 million years as the world changed around them.
Today, the diverse group of bryozoans that dominate modern seas build a great range of structures, from fans to sheets to weird, brain-like blobs. But for the first 50 or 60 million years of their existence, they could only grow like blankets over whatever surface they happened upon.
Scientists recently announced the discovery of that missing evolutionary link — the first known member of the modern bryozoans to grow up into a structure. Called Jablonskipora kidwellae, it is named after UChicago geophysical scientists David Jablonski and Susan Kidwell.
Both are prominent scholars in their fields: Jablonski in origins, extinctions and other forces shaping biodiversity across time and space in marine invertebrates; Kidwell in the study of how fossils are preserved and the reliability of paleobiologic data, especially for detecting recent, human-driven changes to ecosystems. They also happen to be married.
“We were absolutely thrilled. What a treat and an honor, to have this little guy named after us,” said Jablonski, the William R. Kenan Jr. Distinguished Service Professor of Geophysical Sciences.
“I never expected to have a fossil named after me,” said Kidwell, the William Rainey Harper Professor in Geophysical Sciences, “and here it’s one that is an evolutionary breakthrough. We’re still smiling about it.”
Jablonskipora kidwellae lived about 105 million years ago, latching on to rocks and other hard surfaces in shallow seas — a bit like corals, though they’re not related. The fossils came from southwest England, along cliffs near Devon, originally collected in 1903 and analyzed by co-discoverers Paul Taylor and Silviu Martha from London’s Natural History Museum.
Bryozoans never figured out a symbiotic partnership with photosynthetic bacteria, as coral did, so their evolution took a different turn. Each one in a colony is genetically identical, but they have specialized roles, like ants or bees. Their shelly apartment complexes house thousands of the creatures, which have soft bodies with tiny tentacles to catch nutrients.
Growing upright was an evolutionary hack for Jablonskipora kidwellae, the two professors said: building bigger colonies extending upward from just a tiny attachment site was a good evolutionary move, allowing it to tap the water flowing above the sea floor — both for food and to scatter its offspring further. “This is a huge competitive advantage for them,” Jablonski said, “but it required some evolutionary organization to create a vertical structure.” Kidwell added: “This is the next level of cooperation among these individuals within the colony.”
They expressed a fondness for the creature, which they said was, like other bryozoans, “small and slow, but fierce.” Bryozoan fossils are sometimes found having bulldozed right over neighboring colonies in an intense battle for growing space. In a manner of speaking: this all would have taken place in extremely slow motion.
“They’re pretty fabulous little animals,” Kidwell said.
Jablonski and Kidwell have been friends with Taylor, one of the discoverers, since they spent summers on various research at the London Natural History Museum in the 1980s, but they said his news took them both completely by surprise. Jablonski had previously co-authored one paper with Taylor; Kidwell is currently collaborating with him on a study of bryozoan skeletal debris in modern sediments from the Channel Islands off Los Angeles.
It is the second honor of the year for both Kidwell and Jablonski: In April she received the Moore Medal from the Society for Sedimentary Geology, and in October he received the Paleontological Society Medal, that society’s highest honor.
Jablonski had one previous species named after him — a tiny clam — but Jablonskiporawill now be a genus in addition to a species.
Story Source:
Materials provided by University of Chicago. Note: Content may be edited for style and length.
Colorado River’s connection with the ocean was a punctuated affair
The Colorado River’s initial trip to the ocean didn’t come easy, but its story has emerged from layers of sediment preserved within tectonically active stretches of the waterway’s lower reaches.
A scientific team, led by geologist Rebecca Dorsey of the University of Oregon, theorizes that the river’s route off the Colorado Plateau was influenced by a combination of tectonic deformation and changing sea levels that produced a series of stops and starts between roughly 6.3 and 4.8 million years ago.
Dorsey’s team lays out its case in an invited-research paper in the journal Sedimentary Geology. The team’s interpretation challenges long-held conventional thinking that once a river connects to the ocean it’s a done deal.
“The birth of the Colorado River was more punctuated and filled with more uneven behavior than we expected,” Dorsey said. “We’ve been trying to figure this out for years. This study is a major synthesis of regional stratigraphy, sedimentology and micropaleontology. By integrating these different datasets we are able to identify the different processes that controlled the birth and early evolution of this iconic river system.”
The region covered in the research stretches from the southern Bouse Formation, near present-day Blythe, California, to the western Salton Trough north of where the river now trickles into the Gulf of California. The Bouse Formation and deposits in the Salton Trough have similar ages and span both sides of the San Andreas Fault, providing important clues to the river’s origins.
Last year, in the journal Geology, a project led by graduate student Brennan O’Connell, a co-author on the new study, concluded that laminated sediments found in exposed rock along the river near Blythe were deposited by tidal currents 5.5 million years ago. The Gulf of California, it was argued, extended into the region, but the age of the deposits and tectonic and sea level changes at work during that time were not well understood.
Analyses by Kristin McDougall, a micropaleontologist with the U.S. Geological Survey and co-author on the new paper, helped the team better pinpoint the timing of the limestone deposits to about 6 million years ago, when tiny marine organisms lived in the water and were deposited at the same time.
About 5.4 million years ago, conditions changed. Global sea level was falling but instead of bay water levels declining, as would be expected, the water depth increased due to tectonic subsidence of the crust, the researchers discovered.
The basal carbonate material left by marine organisms was then inundated by fresh water as the river swept down into lower elevations, bringing with it clay and sand from mountain terrain, they found.
“The bay filled up with river sediment as the sediment migrated toward the ocean,” Dorsey said. “As more sediment came in, transport processes caused the delta front to move down the valley, transforming the marine bay into a delta and then the earliest through-flowing Colorado River.”
The river had arrived in the gulf, but only temporarily. A tug-of-war lasting for 200,000 to 300,000 years began some 5.1 million years ago, when the river stopped delivering sediments from upstream. The delta retreated and seawater returned to the lower Colorado River valley for a short time. The evidence is in the stratigraphy and fossils. Researchers found that clay and sand from the river became mixed with and then covered by marine sediment.
Something, Dorsey said, apparently was happening upstream, trapping river sediment. A good bet, the researchers think, is tectonic activity, perhaps earthquakes along a fault zone in the river’s northern basin that created subsidence in the riverbed or deep lakes along the river’s path.
At roughly 4.8 million years ago, the river resumed depositing massive amounts of sediment back into the Salton Trough and began rebuilding the delta. Today’s view of the delta, however, reflects human-made modern disturbances to the river’s sediment discharge and flow of water reaching the gulf.
To meet agricultural demands for irrigation and drinking water for human consumption, Hoover Dam was constructed on the river to form Lake Mead during the 1930s. In 1956-1966, Glen Canyon Dam was built, forming Lake Powell.
“If we could go back to 1900 before the dams that trap the sediment and water, we would see that the delta area was full of channels, islands, sand bars and moving sediment. It was a very diverse, dynamic and rich delta system. But humanmade dams are trapping sediment today, eerily similar to what happened roughly 5 million years ago,” Dorsey said.
The bottom line of the research, she said, is that no single process controlled the Colorado River’s initial route to the sea. “Different processes interacted in a surprisingly complicated sequence of events that led to the final integration of that river out to the ocean,” she said.
The research, Dorsey said, provides insights that help scientists understand how such systems change through time. The Colorado River is an excellent natural laboratory, she said, because sedimentary deposits that formed prior to and during river initiation are well exposed throughout the lower river valley.
“This research,” Dorsey said, “is very relevant to today because we have global sea level rising, climate is warming, coastlines are being inundated and submerged, and the supply of river sediment exerts a critical control on the fate of deltas where they meet the ocean. Documenting the complex interaction of these processes in the past helps us understand what is happening today.”
Story Source:
Materials provided by University of Oregon. Note: Content may be edited for style and length.
World’s longest sauropod dinosaur trackway brought to light
In 2009, the world’s largest dinosaur tracks were discovered in the French village of Plagne, in the Jura Mountains. Since then, a series of excavations at the site has uncovered other tracks, sprawling over more than 150 meters. They form the longest sauropod trackway ever to be found. Having compiled and analyzed the collected data, which is published in Geobios, scientists from the Laboratoire de Géologie de Lyon (CNRS / ENS de Lyon / Claude Bernard Lyon 1 University), the Laboratoire Magmas et Volcans (CNRS / Université Clermont Auvergne / Université Jean Monnet / IRD), and the Pterosaur Beach Museum conclude these tracks were left 150 million years ago by a dinosaur at least 35 m long and weighing no less than 35 t.
In 2009, when sauropod tracks were discovered in the French village of Plagne — near Lyon — the news went round the world. After two members of the Oyonnax Naturalists’ Society spotted them, scientists from the Paléoenvironnements et Paléobiosphère research unit (CNRS / Claude Bernard Lyon 1 University) confirmed these tracks were the longest in the world. Between 2010 and 2012, researchers from the Laboratoire de Géologie de Lyon supervised digs at the site, a meadow covering three hectares. Their work unearthed many more dinosaur footprints and trackways. It turns out the prints found in 2009 are part of a 110-step trackway that extends over 155 m — a world record for sauropods, which were the largest of the dinosaurs.
Dating of the limestone layers reveals that the trackway was formed 150 million years ago, during the Early Tithonian Age of the Jurassic Period. At that time, the Plagne site lay on a vast carbonate platform bathed in a warm, shallow sea. The presence of large dinosaurs indicates the region must have been studded with many islands that offered enough vegetation to sustain the animals. Land bridges emerged when the sea level lowered, connecting the islands and allowing the giant vertebrates to migrate from dry land in the Rhenish Massif.
Additional excavations conducted as late as 2015 enabled closer study of the tracks. Those left by the sauropod’s feet span 94 to 103 cm and the total length can reach up to 3 meters when including the mud ring displaced by each step. The footprints reveal five elliptical toe marks, while the handprints are characterized by five circular finger marks arranged in an arc. Biometric analyses suggest the dinosaur was at least 35 m long, weighted between 35 and 40 t, had an average stride of 2.80 m, and traveled at a speed of 4 km/h. It has been assigned to a new ichnospecies1: Brontopodus plagnensis. Other dinosaur trackways can be found at the Plagne site, including a series of 18 tracks extending over 38 m, left by a carnivore of the ichnogenus Megalosauripus. The researchers have since covered these tracks to protect them from the elements. But many more remain to be found and studied in Plagne.
1 The prefix ichno- indicates that a taxon (e.g., a genus or species) has been defined on the basis of tracks or other marks left behind, rather than anatomical remains like bones.
Story Source:
Materials provided by CNRS. Note: Content may be edited for style and length.
Finger and toe fossils belonged to tiny primates 45 million years ago
At Northern Illinois University, Dan Gebo opens a cabinet and pulls out a drawer full of thin plastic cases filled with clear gelatin capsules. Inside each numbered capsule is a tiny fossil — some are so small they rival the diminutive size of a mustard seed.
It’s hard to imagine that anyone would be able to recognize these flecks as fossils, much less link them to an ancient world that was very different from our own, yet has quite a bit to do with us — or the evolution of us.
The nearly 500 finger and toe bones belonged to tiny early primates — some half the size of a mouse. During the mid-Eocene period, about 45 million years ago, they lived in tree canopies and fed on fruit and insects in a tropical rainforest in what is now China.
The fossilized phalanges are described in detail in a new study by Gebo and colleagues, published online this fall ahead of print in the Journal of Human Evolution.
Representing nine different taxonomic families of primates and as many as 25 species, the specimens include numerous fossils attributed to Eosimias, the very first anthropoid known to date, and three fossils attributed to a new and much more advanced anthropoid. The anthropoid lineage would later include monkeys, apes and humans.
“The fossils are extraordinarily small, but in terms of quantity this is the largest single assemblage of fossil primate finger and toe specimens ever recorded,” said Gebo, an NIU professor of anthropology and biology who specializes in the study of primate anatomy.
All of the finger and toe fossils imply tree-dwelling primates with grasping digits in both hands and feet. Many of the smaller fossils are between 1 and 2 millimeters in length, and the animals would have ranged in full body size from 10 to 1,000 grams (0.35 to 35.3 ounces).
“The new study provides further evidence that early anthropoids were minuscule creatures, the size of a mouse or smaller,” Gebo said. “It also adds to the evidence pointing toward Asia as the initial continent for primate evolution. While apes and fossil humans do come from Africa, their ancestors came from Asia.”
The newly described fossils were originally recovered from a commercial quarry near the village of Shanghuang in the southern Jiangsu Province of China, about 100 miles west of Shanghai. In recent decades, Shanghuang has become well-known among paleontologists.
“Shanghuang is truly an amazingly diverse fossil primate locality, unequaled across the Eocene,” Gebo said. “Because no existing primate communities show this type of body-size distribution, the Shanghuang primate fauna emphasizes that past ecosystems were often radically different from those we are familiar with today.”
Co-author Christopher Beard, a paleontologist at the University of Kansas in Lawrence who has been working on Shanghuang fossils for 25 years, said the limestone in the quarry is of Triassic age — from the very beginning of the Age of Dinosaurs some 220 million years ago. Owing to a subsequent phase of erosion, the limestone developed large fissures containing fossil-rich sediments dating to the middle Eocene, after dinosaurs went extinct.
In the early 1990s, more than 10 tons of fossil-bearing matrix were collected from the fissures and shipped to the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing and the Carnegie Museum of Natural History in Pittsburgh. There, the matrix was washed and screened, yielding fossil bones and teeth from ancient mammals, many of which remain to be identified.
“Because of commercial exploitation of the quarry site, the fossil-bearing fissure-fillings at Shanghuang are now exhausted,” Beard said. “So, the fossils that we currently have are all that will ever be found from this site.”
Gebo was initially recruited during the late 1990s to spearhead research on primate limb and ankle bones from Shanghuang. That led to two publications in 2000, when he and colleagues first announced the discovery of 45 million-year-old, thumb-length primates, the smallest ever recovered, from this same site. The work identifying body parts also helped cement the status of Eosimias, first identified by Beard on the basis of jaw fragments discovered at the site, as an extremely primitive anthropoid lying at the very beginning of our lineage’s evolutionary past.
In more recent years, Gebo found additional specimens, sifting through miscellaneous elements from Shanghuang both at the Carnegie Museum and the University of Kansas. He brought the delicate and minuscule finger and toe fossils to NIU for study using traditional and electron-scanning microscopes.
The fossils that endured the millennia may be small but still have a story to tell. “We can actually identify different types of primates from the shapes of their fingers and toes,” Gebo said.
Primates are mammals, characterized by having bigger brains, grasping hands and feet, nails instead of claws and eyes located in the front of the skull. Living prosimians, or living lower primates, include lemurs and tarsiers, and have broader fingertips. In contrast, most living anthropoids, also known as higher primates, have narrow fingertips.
Fossils from the unnamed advanced anthropoid are narrow, Gebo said.
“These are the earliest known examples of those narrow fingers and toes that are key to anthropoid evolution,” he added. “We can see evolution occurring at this site, from the broader finger or toe tips to more narrow.”
Unlike other prehistoric forests across the globe that have a mixture of large and small primates, Shanghuang’s fossil record is unique in being nearly absent of larger creatures.
The unusual size distribution is likely the result of a sampling bias, Gebo said. Researchers might be missing the larger primate fauna because of processes affecting fossil preservation, and for similar reasons scientists at other Eocene localities could be missing the small-sized fauna.
“Many of the fossil specimens from Shanghuang show evidence of partial digestion by predatory birds, which may have specialized on preying upon the small primates and other mammals that are so common at Shanghuang, thus explaining the apparent bias toward small fossil species there,” Beard added.
Some of the primate fossils found in Shanghuang are found in other countries. Eosimias fossils have been recovered in Myanmar, for example. But Shanghuang stands out because of the presence of more advanced anthropoids and the sheer diversity of primates.
“You don’t find all of these fossil primates in one place except at Shanghuang,” Gebo said.
Story Source:
Materials provided by Northern Illinois University. Note: Content may be edited for style and length.
Humankind’s earliest ancestors discovered in southern England
Fossils of the oldest mammals related to humankind have been discovered on the Jurassic Coast of Dorset.
The two teeth are from small, rat-like creatures that lived 145 million years ago in the shadow of the dinosaurs. They are the earliest undisputed fossils of mammals belonging to the line that led to human beings.
They are also the ancestors to most mammals alive today, including creatures as diverse as the Blue Whale and the Pigmy Shrew. The findings are published in the Journal, Acta Palaeontologica Polonica, in a paper by Dr Steve Sweetman, Research Fellow at the University of Portsmouth, and co-authors from the same university. Dr Sweetman, whose p
rimary research interest concerns all the small vertebrates that lived with the dinosaurs, identified the teeth but it was University of Portsmouth undergraduate student, Grant Smith who made the discovery.
Dr Sweetman said: “Grant was sifting through small samples of earliest Cretaceous rocks collected on the coast of Dorset as part of his undergraduate dissertation project in the hope of finding some interesting remains. Quite unexpectedly he found not one but two quite remarkable teeth of a type never before seen from rocks of this age. I was asked to look at them and give an opinion and even at first glance my jaw dropped!”
“The teeth are of a type so highly evolved that I realised straight away I was looking at remains of Early Cretaceous mammals that more closely resembled those that lived during the latest Cretaceous — some 60 million years later in geological history. In the world of palaeontology there has been a lot of debate around a specimen found in China, which is approximately 160 million years old. This was originally said to be of the same type as ours but recent studies have ruled this out. That being the case, our 145 million year old teeth are undoubtedly the earliest yet known from the line of mammals that lead to our own species.”
Dr Sweetman believes the mammals were small, furry creatures and most likely nocturnal. One, a possible burrower, probably ate insects and the larger may have eaten plants as well.
He said: “The teeth are of a highly advanced type that can pierce, cut and crush food. They are also very worn which suggests the animals to which they belonged lived to a good age for their species. No mean feat when you’re sharing your habitat with predatory dinosaurs!”
The teeth were recovered from rocks exposed in cliffs near Swanage which has given up thousands of iconic fossils. Grant, now reading for his Master’s degree at The University of Portsmouth, said that he knew he was looking at something mammalian but didn’t realise he had discovered something quite so special. His supervisor, Dave Martill, Professor of Palaeobiology, confirmed that they were mammalian, but suggested Dr Sweetman, a mammal expert should see them.
Professor Martill said: “We looked at them with a microscope but despite over 30 years’ experience these teeth looked very different and we decided we needed to bring in a third pair of eyes and more expertise in the field in the form of our colleague, Dr Sweetman.
“Steve made the connection immediately, but what I’m most pleased about is that a student who is a complete beginner was able to make a remarkable scientific discovery in palaeontology and see his discovery and his name published in a scientific paper. The Jurassic Coast is always unveiling fresh secrets and I’d like to think that similar discoveries will continue to be made right on our doorstep.”
One of the new species has been named Durlstotherium newmani, christened after Charlie Newman, the landlord of the Square and Compass pub in Worth Matravers, close to where the fossils were discovered.
Story Source:
Materials provided by University of Portsmouth. Note: Content may be edited for style and length.