America’s Ancient Hurricane Belt and the U.S.-Canada Equator
ScienceDaily (Nov. 15, 2012) — The recent storms that have battered settlements on the east coast of America may have been much more frequent in the region 450 million years ago, according to scientists.
New research pinpointing the positions of the Equator and the landmasses of the USA, Canada and Greenland, during the Ordovician Period 450 million years ago, indicates that the equator ran down the western side of North America with a hurricane belt to the east.
The hurricane belt would have affected an area covering modern day New York State, New Jersey and most of the eastern seaboard of the USA.
An international research team led by Durham University used the distribution of fossils and sediments to map the line of the Ordovician Equator down to southern California.
The study, published in the journal Geology,is the first to accurately locate and map the ancient Equator and adjacent tropical zones. Previous studies had fuelled controversy about the precise location of the ancient equator. The researchers say the new results show how fossils and sediments can accurately track equatorial change and continental shifts over time.
Co-lead author Professor David Harper, Department of Earth Sciences, said: “The equator, equatorial zones and hurricane belts were in quite different places in the Ordovician. It is likely that the weather forecast would have featured frequent hurricane-force storms in New York and other eastern states, and warmer, more tropical weather from Seattle to California.”
Since Polar Regions existed 450 million years ago, the scientists believe that there would have been similar climate belts to those of today.
The research team from Durham University and universities in Canada, Denmark and the USA, discovered a belt of undisturbed fossils and sediments -deposits of shellfish- more than 6000 km long stretching from the south-western United States to North Greenland. The belt also lacks typical storm-related sedimentary features where the deposits are disturbed by bad weather. The researchers say that this shows that the Late Ordovician equatorial zone, like the equatorial zone today, had few hurricane-grade storms.
In contrast, sedimentary deposits recorded on either side of the belt provide evidence of disturbance by severe storms. Hurricanes tend to form in the areas immediately outside of equatorial zones where temperatures of at least 260C combine with Earth’s rotation to create storms. The researchers believe that hurricane belts would probably have existed on either side of the ancient equator, within the tropics.
The position of the equatorial belt, defined by undisturbed fossil accumulations and sediments, is coincident with the Late Ordovician equator interpreted from magnetic records (taken from rocks of a similar age from the region). This provides both a precise equatorial location and confirms that Earth’s magnetic field operated much in the same way as it does today.
The scientists pieced together the giant jigsaw map using the evidence of the disturbed and undisturbed sedimentary belts together with burrows and shells. Using the findings from these multiple sites, they were able to see that North America sat on either side of the Equator.
Co-author Christian Rasmussen, University of Copenhagen, said: “The layers of the earth build up over time and are commonly exposed by plate tectonics. We are able to use these ancient rocks and their fossils as evidence of the past to create an accurate map of the Ordovician globe.”
Professor Harper added: “The findings show that we had the same climate belts of today and we can see where North America was located 450 million years ago, essentially on the Equator.”
“While the Equator has remained in approximately the same place over time, the landmasses have shifted dramatically over time through tectonic movements. The undisturbed fossil belt helps to locate the exact position of the ancient Laurentian landmass, now known as North America.”
The study is funded by the Danish Council for Independent Research.
New Ancient Shark Species Gives Insight Into Origin of Great White
ScienceDaily (Nov. 14, 2012) — The great white shark is one of the largest living predatory animals and a magnet for media sensationalism, yet its evolutionary history is as misunderstood as its role as a menace.
77Related Ads:
•Fish Species
•Science News
•Shark Fishing
•Evolution
See Also:
Plants & Animals
•Fish
•Sea Life
•New Species
Fossils & Ruins
•Fossils
•Evolution
•Ancient Civilizations
Reference
•Whale shark
•Great White Shark
•Shark
•Mackerel
Originally classified as a direct relative of megatooth sharks, the white shark’s evolutionary history has been debated by paleontologists for the last 150 years. In a study appearing in print and online today in the journal Palaeontology, University of Florida researchers name and describe an ancient intermediate form of the white shark, Carcharodon hubbelli, which shows the modern white shark likely descended from broad-toothed mako sharks. The study deviates from the white shark’s original classification as a relative of megatooth sharks such as the extinct Carcharocles megalodon, the largest carnivorous shark that ever lived.
Based on recalibrated dates of the excavation site in Peru, the study also concludes the new species was about 2 million years older than previously believed.
“We can look at white sharks today a little bit differently ecologically if we know that they come from a mako shark ancestor,” said lead author Dana Ehret, a lecturer at Monmouth University in New Jersey who conducted research for the study as a UF graduate student. “That 2-million-year pushback is pretty significant because in the evolutionary history of white sharks, that puts this species in a more appropriate time category to be ancestral or kind of an intermediate form of white shark.”
Most ancient shark species are named using isolated teeth, but analysis of C. hubbelli, also known as Hubbell’s white shark, was based on a complete set of jaws with 222 teeth intact and 45 vertebrae. The species was named for Gainesville resident Gordon Hubbell, a collector who recovered the fossils from a farmer who discovered them in the Pisco Formation of southern Peru in 1988. Hubbell donated the specimens to the Florida Museum of Natural History on the UF campus in December 2009.
“The impetus of this project was really the fact that Gordon Hubbell donated a majority of his fossil shark collection to the Florida Museum,” Ehret said. “Naming the shark in his honor is a small tip of the hat to all the great things he has done to advance paleontology.”
Ehret and co-authors published an initial study describing the shark specimens in the Journal of Vertebrate Paleontology in 2009, but dates for the site reflected information from a 1985 study about the Pisco Formation, he said. With Hubbell’s hand-drawn maps and descriptions of the landscape, researchers returned to the site and found the exact spot the fossils were discovered.
Scientists extracted more accurate age estimates from mollusk shells in the fossil horizon to determine the shark species was from the late Miocene, about 6.5 million years ago, rather than the early Pliocene, about 4.5 million years ago. The new dates will also be useful for better understanding other fossils found in the rich Pisco Formation, which include new whale, marine sloth and terrestrial vertebrate species.
“The thing that was remarkable to me was that these fossils came from right out in the desert and this was before GPS, so Dana had only an approximate notion of where it was,” said Florida Museum of Natural History Director Douglas Jones, a study co-author who conducted strontium isotope dating of the fossils. “But after a few days of looking, we were able to find this deposit and Dana found the rest of the missing shark’s teeth.”
Researchers determined Hubbell’s white shark was related to ancient broad-toothed mako sharks by comparing the physical shapes of shark teeth to one another. While modern white sharks have serrations on their teeth for consuming marine mammals, mako sharks do not have serrations because they primarily feed on fish. Hubbell’s white shark has coarse serrations indicative of a transition from broad-toothed mako sharks to modern white sharks.
These evolutionary relationships have been hypothesized for decades, and researchers who interpret modern white sharks as being more closely related to megatooth sharks say it is “a friendly disagreement,” according to Michael Gottfried, an associate professor in geological sciences at Michigan State University.
But shark expert David Ward, a research associate at the Natural History Museum, London, said “fewer people believe the big megatooth sharks are related to the great white sharks than believe the Earth is flat.”
“Everyone working within the field will be absolutely delighted to see this relationship formalized,” Ward said.
Study co-authors include Bruce MacFadden of the Florida Museum, Thomas DeVries of the Burke Museum of Natural History and Culture in Seattle, David Foster of UF and Rodolfo Salas-Gismondi of Museo de Historia Natural Javier Prado in Lima.
Oldest Fossil of Giant Panda Family Discovered
ScienceDaily (Nov. 14, 2012) — New fossils found in Spain are thought to be of the oldest recorded ancestor of the giant panda.
The fossils reveal the origins of this unique bear, as described in a paper published Nov. 14 in the open access journal PLOS ONE by Juan Abella and colleagues from the National Museum of Natural Sciences and the Catalan Institute of Paleontology, Spain.
The two 11.6 million-year-old fossil jaws and teeth were discovered in southwest Europe and represent a new genus likely to be the oldest known members of the giant panda family. The fossils bear the characteristics of a bear adapted to eating tough plant material like bamboo. The giant panda, native to certain parts of China, is the only living member of this unique bear family with these dietary habits.
Corresponding author Juan Abella adds: “The new genus we describe in this paper is not only the first bear recorded in the Iberian Peninsula, but also the first of the giant panda’s lineage.”
The Spanish Ministerio de Economı´a y Competitividad (CGL2011-28681, CGL2011-25754, and RYC-2009-04533 to DMA), the research group BSCH-UCM 910607, and the Generalitat de Catalunya (2009 SGR 754 GRC) supported this research. Fieldwork at ACM was funded by CESPA Gestio´n de Residuos, S.A.U.