Date of Earliest Animal Life Reset by 30 Million Years
ScienceDaily (June 28, 2012) — University of Alberta researchers have uncovered physical proof that animals existed 585 million years ago — 30 million years earlier than previous records show.
The discovery was made by U of A geologists Ernesto Pecoits and Natalie Aubet in Uruguay. They found fossilized tracks a centimeter-long, slug-like animal left behind 585 million years ago in silty, shallow-water sediment.
A team of U of A researchers determined that the tracks were made by a primitive animal called a bilaterian, which is distinguished from other non-animal, simple life forms by its symmetry — its top side is distinguishable from its bottom side — and a unique set of “footprints.”
U of A paleontologist Murray Gingras says fossilized tracks indicate that the soft-bodied animal’s musculature enabled it to move through the sediment on the shallow ocean floor. “The pattern of movement indicates an evolutionary adaptation to search for food, which would have been organic material in the sediment,” he said.
There were no fossilized remains of a bilaterian’s body, just its tracks. “Generally when we find tracks of a soft-bodied animal, it means there’s no trace of the body because they fossilize under different conditions,” said Gingras. “It’s usually just the body or just the tracks, not both.”
It took more than two years for the U of A team members to satisfy themselves and a peer review panel of scientists that they had the right age for the bilaterian fossils.
U of A geochronologist Larry Heaman was among a group that returned to Uruguay to collect more fossil samples locked in a layer of sandstone. Heaman says because the depositional age of the sandstone is difficult to determine, they focused their investigation on particles of granitic rock found invading the sandstone samples.
Heaman explains that the granitic rocks were put through the university’s mass spectrometry equipment, a process in which samples are bombarded by laser beams and the resulting atom- to molecule-sized particles are analyzed and dated.
Over the course of his U of A career, Heaman has taken part in a number of breakthrough research projects involving fossils. Last year he got the attention of the paleontology world when he confirmed the surprising date of a fossilized dinosaur bone found in New Mexico. Using U of A equipment, Heaman determined that the bone came from a sauropod, a plant-eating dinosaur that was alive some 700,000 years after the mass-extinction event that many believe wiped out all dinosaur life on Earth.
Heaman says the challenge in dating the bilaterian fossil makes it stand out from his other work. “This was the top research accomplishment because it has more direct relevance to the evolution of life as we know it,” he said. “It was such a team effort; any one of us on our own couldn’t have done this.”
Before the U of A bilaterian find, the oldest sign of animal life was dated at 555 million years ago, from a find made in Russia.
Kurt Konhauser, a U of A geomicrobiologist, says the team’s discovery will prompt new questions about the timing of animal evolution and the environmental conditions under which they evolved.
“This research was a huge interdisciplinary effort and shows the depth of the research capabilities here at the U of A,” said Konhauser. “The challenge brought the sciences of geology, paleontology, geomicrobiology and geochronology together to nail down the age of the fossils.”
Konhauser explains that in the past, research into the earliest signs of animal life would typically shift the date back by a few million years, but the U of A’s finding of 30 million years is a real breakthrough.
The U of A’s research team includes Ernesto Pecoits, Natalie Aubet, Kurt Konhauser, Larry Heaman, Richard Stern and Murray Gingras. The research was published June 28 in the journal Science.
Newly Discovered Dinosaur Implies Greater Prevalence of Feathers; Megalosaur Fossil Represents First Feathered Dinosaur Not Closely Related to Birds
ScienceDaily (July 2, 2012) — A new species of feathered dinosaur discovered in southern Germany is further changing the perception of how predatory dinosaurs looked. The fossil of Sciurumimus albersdoerferi,which lived about 150 million years ago, provides the first evidence of feathered theropod dinosaurs that are not closely related to birds.
The fossil is described in a paper published in the Proceedings of the National Academy of Sciences on July 2.
“This is a surprising find from the cradle of feathered dinosaur work, the very formation where the first feathered dinosaur Archaeopteryx was collected over 150 years ago,” said Mark Norell, chair of the Division of Palaeontology at the American Museum of Natural History and an author on the new paper along with researchers from Bayerische Staatssammlung für Paläontologie und Geologie and the Ludwig Maximilians University.
Theropods are bipedal, mostly carnivorous dinosaurs. In recent years, scientists have discovered that many extinct theropods had feathers. But this feathering has only been found in theropods that are classified as coelurosaurs, a diverse group including animals likeT. rexand birds. Sciurumimus — identified as a megalosaur, nota coelurosaur — is the first exception to this rule. The new species also sits deep within the evolutionary tree of theropods, much more so than coelurosaurs, meaning that the species that stem from Sciurumimus are likely to have similar characteristics.
“All of the feathered predatory dinosaurs known so far represent close relatives of birds,” said palaeontologist Oliver Rauhut, of the Bayerische Staatssammlung für Paläontologie und Geologie. “Sciurumimus is much more basal within the dinosaur family tree and thus indicates that all predatory dinosaurs had feathers.”
The fossil, which is of a baby Sciurumimus, was found in the limestones of northern Bavaria and preserves remains of a filamentous plumage, indicating that the whole body was covered with feathers. The genus name ofSciurumimus albersdoerferirefers to the scientific name of the tree squirrels,Sciurus, and means “squirrel-mimic”-referring to the especially bushy tail of the animal. The species name honours the private collector who made the specimen available for scientific study.
“Under ultraviolet light, remains of the skin and feathers show up as luminous patches around the skeleton,” said co-author Helmut Tischlinger, from the Jura Museum Eichstatt.
Sciurumimusis not only remarkable for its feathers. The skeleton, which represents the most complete predatory dinosaur ever found in Europe, allows a rare glimpse at a young dinosaur. Apart from other known juvenile features, such as large eyes, the new find also confirmed other hypotheses.
“It has been suggested for some time that the lifestyle of predatory dinosaurs changed considerably during their growth,” Rauhut said. “Sciurumimus shows a remarkable difference to adult megalosaurs in the dentition, which clearly indicates that it had a different diet.”
Adult megalosaurs reached about 20 feet in length and often weighed more than a ton. They were active predators, which probably also hunted other large dinosaurs. The juvenile specimen of Sciurumimus, which was only about 28 inches in length, probably hunted insects and other small prey, as evidenced by the slender, pointed teeth in the tip of the jaws.
“Everything we find these days shows just how deep in the family tree many characteristics of modern birds go, and just how bird-like these animals were,” Norell said. “At this point it will surprise no one if feather like structures were present in the ancestors of all dinosaurs.
Feathered Saurians: Downy Dinosaur Discovered
ScienceDaily (July 3, 2012) — The new fossil find from the chalk beds of the Franconian Jura evokes associations with a pet cemetery, for the young predatory dinosaur reveals clear traces of fluffy plumage. It also poses an intriguing question: Were all dinosaurs dressed in down?
The fossil of the fledgling saurian, probably newly hatched when it met its end, is remarkable in many ways. First of all, juveniles are extremely rare in the dinosaur fossil record, so every new discovery provides insights into dinosaur nurseries. Moreover, this specimen is perhaps the best-preserved predatory dinosaur that has yet been found in Europe. And Sciurimimus albersdoerferi, which lived during the Jurassic Period some 150 million years ago, displays one very striking feature — its whole body must have been covered with a thick plumage of feathers.
All the feathered dinosaurs so far described belonged to the lineage that gave rise to modern birds. “However, Sciurumimus belongs to a much older branch of the family tree of predatory dinosaurs,” says LMU paleontologist Dr. Oliver Rauhut, who is also affiliated with the Bavarian State Collection for Paleontology and Geology, and led the investigation into the structure and affinities of the sensational new find. “Its plumage may be telling us that all predatory dinosaurs had feathers.”
Were all dinos decked out with feathers?
Several fossil finds have revealed that the pterosaurs — which were capable of flight and are the closest relatives of the dinosaurs — bore hair-like plumage on their bodies. Their fluffy coats resemble the downy feathers that can be recognized in the new fossil. This observation is very significant, as it suggests to the researchers that not just the pterosaurs and the predatory dinosaurs, but all dinosaurs may have had feathers. “If that is the case, we must abandon all our notions about giant reptiles encased in tough scales,” Rauhut says.
As the German-American research team led by Rauhut has been able to show, the new specimen represents a young megalosaur. The genus name Sciurumimus means “squirrel-like” and refers to the animal’s bushy tail, while the species designation albersdoerferi honors the private collector who made the fossil available for scientific study. “When the skeleton was irradiated with UV light, we were able to discern fragments of the skin and the plumage as fluorescent spots and filaments,” says co-author Dr. Helmut Tischlinger.
Cute little dino kids The juvenile Sciurumimus tells us even more. For instance, as in the case of other dinosaurs, its eyes were proportionately much larger than those of adult animals. In other words, young dinosaurs conformed to the “babyface” model. Secondly, it has long been suspected that not just the form of a dinosaur’s face, but also its whole mode of life, was subject to change during lifetime. “And indeed, this individual has a very different set of teeth from those found in adult megalosaurs,” says Rauhut. “That enables us to conclude that their diets also changed as they got older.”
The young Sciurumimus, with its slender, pointed teeth probably preyed on insects and small animals. Fully grown megalosaurs, on the other hand, often exceeded 6 m in length and may have weighed more than a ton, and could give other large dinosaurs a good run for their money. That may also be true of the new species. “We know that dinosaurs were able to grow at terrific rates; diminutive hatchlings could reach adult lengths of several meters,” Rauhut points out. “And even if they might have looked fluffy, they were certainly among the top predators in the food chain.”
The study was financially supported by the Volkswagen Foundation and the American Museum of Natural History